Силы, действующие на автомобиль при движении — Как отремонтировать ВАЗ

Силы действующие на автомобиль при движении Теория

Схема сил действующих на ведущее колесо

На движущийся автомобиль действует ряд сил, часть из которых направлена по оси движения автомобиля, а часть — под углом к этой оси. Условимся называть первые из этих сил продольными, а вторые боковыми.

Рис. Схема сил действующих на ведущее колесо.
а — состояние неподвижности; б — состояние движения

Продольные силы могут быть направлены как по ходу, так и против хода движения автомобиля. Силы, направленные по ходу движения, являются движущимися и стремятся продолжить движение. Силы, направленные против хода движения, являются силами сопротивления и стремятся остановить автомобиль.

На автомобиль, движущийся по горизонтальному и прямому участку дороги, действуют следующие продольные силы:

  • тяговая сила
  • сила сопротивления воздуха
  • сила сопротивления качению

При движении автомобиля в гору возникает сила сопротивления подъему, а при разгоне автомобиля—сила сопро­тивления разгону (сила инерции).

Тяговая сила

Сила сцепления колес с дорогой

У легковых автомобилей полный вес рас­пределяется по осям примерно поровну. Поэтому сцепной вес его можно принять равным 50% полного веса. У грузовых автомоби­лей при полной их на­грузке сцепной вес (вес, приходящийся на заднюю ось) составляет примерно 60—70% полного веса.

Величина коэффициента сцепления имеет большое значение для эксплуатации автомобиля и безопасности движения, так как от него зависят проходимость автомобиля, тормозные качества, возможность, пробуксовки и заноса ведущих колес. При незначи­тельном коэффициенте сцепления трогание автомобиля с места со­провождается пробуксовкой, а торможение — скольжением колес. В результате автомобиль иногда не удается тронуть с места, а при торможении происходит резкое увеличение тормозного пути и возникновение заноса.

На асфальтобетонных покрытиях в жаркую погоду на поверх­ность выступает битум, делая дорогу маслянистой и более скольз­кой, что снижает коэффициент сцепления. Особенно сильно снижается коэффициент сцепления при смачивании дороги первым дождем, когда образуется еще не смытая пленка жидкой грязи. Заснежённая или обледенелая дорога особенно опасна в теплую погоду, когда поверхность подтаивает.

При увеличении скорости движения коэффициент сцепления снижается, в особенности на мокрой дороге, так как выступы ри­сунка протектора шины не успевают продавливать пленку влаги.

Исправное состояние рисунка протектора шины имеет большое значение при движении по грунтовым дорогам, снегу, песку, а также по дорогам с твердым покрытием, по покрытым пленкой грязи или воды. Благодаря наличию выступов рисунка опорная площадь шины уменьшается и, следовательно, возрастает удельное давление на поверхность дороги. При этом легче продавливается грязевая пленка и восстанавливается контакт с дорожным покрытием, а на легком грунте происходит непосредственное зацепление выступов рисунка за грунт.

Повышенное давление воздуха в шине уменьшает ее опорную поверхность, вследствие чего удельное давление возрастает на­столько, что при трогании с места и при торможении может произойти разрушение резины и сцепление колес с дорогой уменьшается.

Таким образом, величина коэффициента сцепления зависит от многих условий и может изменяться в довольно значительных пределах. Так как много дорожно-транспортных происшествий происходит из-за плохого сцепления, то водители должны уметь приблизительно оценивать величину коэффициента сцепления и выбирать скорость движения и приемы управления в соответствии с ним.

Сила сопротивления воздуха

  • лобового сопротивле­ния (около 55—60% всего сопротивления воздуха)
  • создаваемого выступающими частями—подножками автобуса или автомобиля, крыльями (12—18%)
  • возникающего при прохождении воздуха через радиатор и подкапотное пространство (10—15%) и др.

Передней частью автомобиля воздух сжимается и раздвигает­ся, в то время как в задней части автомобиля создается разреже­ние, которое вызывает образование завихрений.

Сила сопротивления воздуха зависит от величины лобовой, поверхности автомобиля, его формы, а также от скорости движе­ния. Лобовую площадь грузового автомобиля определяют как произведение колеи (расстояние между шинами) на высоту авто­мобиля. Сила сопротивления воздуха возрастает пропорционально квадрату скорости движения автомобиля (если скорость возра­стает в 2 раза, то сопротивление воздуха увеличивается в 4 раза).

Читайте также:  Причины по которым Старлайн не открывает или не закрывает двери авто с брелока и решение проблемы

Для улучшения обтекаемости и уменьшения сопротивления воздуха ветровое стекло автомобиля располагают наклонно, а вы­ступающие детали (фары, крылья, ручки дверей) устанавливают заподлицо с внешними очертаниями кузова. У грузовых автомоби­лей можно уменьшить силу сопротивления воздуха, закрыв грузо­вую платформу брезентом, натянутым между крышей кабины и задним бортом.

Сила сопротивления качению

Сила сопротивления качению равна произведению полного веса автомобиля на коэффициент сопротивления качению шин, который зависит от давления воздуха в шинах и качества дорожного покрытия. Вот- некоторые значения коэффициента сопротивления качению шин:

  • для асфальтобетонного покрытия— 0,014—0,020
  • для гравийного покрытия—0,02—0,025
  • для песка—0,1—0,3

Сила сопротивления подъему

При движении на подъем автомобиль испытывает дополнитель­ное сопротивление, которое зависит от угла наклона дороги к гори­зонту. Сопротивление подъему тем больше, чем больше вес автомобиля и угол наклона дороги. При подъезде к подъему необходимо правильно оценить возможности преодоления подъема. Если подъем непродолжительный, его преодолевают с разгоном автомобиля перед подъемом. Если подъем продолжительный, его преодолевают на пониженной передаче, переключившись на нее у начала подъема.

При движении автомобиля на спуске сила сопротивления подъему направлена в сторону движения и является движущей силой.

Автомобильный справочник

для настоящих любителей техники

Динамика автомобиля

Под динамикой автомобиля понимают его свойство перевозить грузы и пассажиров с максимально возможной средней скоростью при заданных дорожных условиях. Чем лучше динамика автомобиля, тем выше его производительность. Кроме того, динамика автомобиля в полной мере определяет безопасность его эксплуатации. Динамика автомобиля зависит от его тяговых и тормозных свойств.

Динамика прямолинейного движения

Общее сопротивление движению

Сопротивление движению вычисляется как (рис. «Силы сопротивления движению» ):

Мощность, которая должна поступить на ве­дущие колеса автомобиля для преодоления сопротивления движению (силы сопротивле­ния движению), равна:

PW = FW v или PW = FWV /3600

Сопротивление качению

Сопротивление качению является следствием возникающих процес­сов деформации в зоне контакта шины с до­рогой. При этом применимо следующее:

Fro =f G cosa — fmg cosa

Приближенный расчет сопротивления каче­нию может быть выполнен путем использо­вания коэффициентов, представленных в приведенной ниже таблице «Коэффициенты сопротивления качению» и на рис. «Сопротивление качению радиальных шин по ровной, горизонтальной дороге при нормальных нагрузке и внутреннем давлении».

Увеличение коэффициента сопротивления качению f прямо пропорционально уровню деформации и обратно пропорционально ра­диусу шины. Следовательно, коэффициент будет увеличиваться при увеличении нагрузки, скорости и при снижении давления в шине.

При прохождении поворотов сопротивле­ние качению увеличивается за счет добавоч­ного сопротивления повороту:

Fk=fкG

Коэффициент сопротивления повороту fк является функцией скорости движения авто­мобиля, радиуса поворота, геометрических характеристик подвески автомобиля, типа шин, давления в шинах и поведения автомо­биля под действием поперечного ускорения.

Таблица.«Коэффициент аэродинамического сопротивления и мощность, затрачиваемая на преодоление аэродинамического сопротивления, для различных типов кузова»

Аэродинамическое сопротивление

Определяется по формуле:

FL = 0,5 p⋅ cw⋅ А (v + v) 2

FL =0,0386⋅ р⋅ cw⋅ А (v + v) 2 ,

где: v в км/ч, FL в Н, р в кг/м 3 , А в м 2 , плотность воздуха р = 1,202 кг/м 3 на высоте 200 м.

PL = FL = 0,5 р cw Av (v + v) 2

PL = 12,9-10 -6 cw A v (v + v) 2

Максимальное поперечное сечение автомобиля: А ≈0,9 х ширина колеи х высота.

Эмпирическое определение коэффициентов аэродинамического сопротивления и сопротивления качению

Автомобиль движется накатом на нейтральной передаче в условиях безветрия по ровной до­роге. Для двух заданных значений скоростей движения, v1 (высокая скорость) и v2 (малая скорость), замеряется время, необходимое, чтобы автомобиль при этих условиях замед­лил свое движение. Эта информация исполь­зуется для расчета средних замедлений a1 и а2. Формулы и примеры из табл. «Эмпирические определения коэффициентов аэродинамического сопротивления и сопротивления качению» приведены для автомобиля массой m = 1450 кг с площадью поперечного сечения А = 2,2 м 2 .

Этот метод применим для скоростей дви­жения автомобиля до 100 км/ч.

Сопротивление движению автомобиля на подъем и силы, действующие на автомобиль при движении под уклон

Сопротивление движению на подъем (Fst со знаком плюс) и силы, действующие на автомо­биль при движении под уклон (Fst со знаком минус) рассчитываются следующим образом:

Fst = G sinа = m g sina

Fst ≈ 0,01 m g p

Эти уравнения применимы с уклонами до р ⩽ 20%, поскольку при малых углах применимо следующее:

sina ≈ tana (погрешность менее 2 %).

Мощность, затрачиваемая на преодоление подъема, равна:

Pst = Fst v или если Pst измеряется в кВт, Fst в Н и v в км/ч:

Pst = Fst v/3600 = m g v sina/3600

Pst = m g p v / 3600

Продольный уклон дороги равен:

р = (h/l)⋅100 % или р = (tanа) ⋅100 %

где h соответствует проекции наклонной поверхности l на вертикальную ось.

В англоязычных странах продольный уклон определяется отношением 1 в 100/р .

Читайте также:  Статьи - Автостекло в Воронеже, продажа автостекла Воронеж - МирАвтоСтекла

Например, при р =50% отношение 1 к 2.

Пример вычисления силы тяги и мощности, затрачиваемой на преодоление подъема

Для преодоления подъема с уклоном р = 21 %, автомобилю массой 1500 кг потре­буется сила тяги на колесах приблизительно 1,5 x 2000 Н = 3000 Н (значение из табл. «Угол уклона и сопротивление движению на подъем» ) и при v = 40 км/ч мощность, затрачиваемая на преодоление подъема, приблизительно 1,5 х 22 кВт = 31 кВт (значение из табл. «Сопротивление движению на подъем и мощность, затрачиваемая на преодоление подъема» ).

Сила тяги

Чем больше крутящий момент двигателя М и общее передаточное число трансмиссии i между двигателем и ведущими колесами, и чем ниже потери мощности в трансмиссии, тем выше сила тяги F на ведущих колесах автомобиля.

F = (Mi/r)⋅η или F = P η / v

η — КПД привода. Для двигателя про­дольного расположения η ≈ 0,88 — 0,92, для двигателя поперечного расположения η ≈ 0,91 -0,95.

Сила тяги частично затрачивается на преодо­ление сопротивления движению. При боль­шом сопротивлении движению, имеющем место на подъемах, следует включать в ко­робке передач пониженную передачу (т. е. увеличивать передаточное число трансмис­сии).

Частота вращения коленчатого вала двигателя и скорость автомобиля

Частота вращения коленчатого вала вычисляется как:

n = 60vi / 2 πr

или при v в км/ч:

n = 1000vi / 2π·60r

Ускорение

Избыточная сила F-Fw вызывает ускорение автомобиля. Или замедление, когда Fw превышает F

a = (F-Fw) / km m

a = (P η — Pw) / v km m

Коэффициент учета вращающихся масс km (рис. «Определение коэффициента учета вращающихся масс km» ) позволяет учесть дополнительное увеличение инерционных масс автомобиля из-за наличия вращающихся частей (колеса, маховик, коленчатый вал и т. п.).

Сила тяги и скорость автомобилей с автоматической трансмиссией

Когда уравнение силы тяги применяется для автомобилей с автоматической трансмиссией с гидротрансформатором или гидромуфтой, крутящий момент двигателя заменяется крутящим моментом турбины гидротранс­форматора, а частота вращения коленча­того вала двигателя — частотой вращения турбины гидротрансформатора. Используя кривую характеристики гидротрансформа­тора, можно определить зависимость между

и скоростной характеристи­кой двигателя

Силовой баланс для отдельных передач в функции скорости движения может быть определена из диаграммы силы тяги/сопротивления движению. На диаграмме можно увидеть точки излома, типичные для гидротрансформатора, возникающие вслед­ствие мультипликации крутящего момента. Максимальную скорость в каждом случае для данной передачи можно определить по точкам пересечения линий тягового усилия с линиями сопротивления движению.

Силы, действующие на автомобиль во время его движения

Во время движения, на автомобиль действуют разные силы. Внешними силами, на преодоление которых расходуется тяговое усилие, полученное от двигателя на ведущих колесах автомобиля при его движении по горизонтальной плоскости с равномерной скоростью, являются силы сопротивления качению и сила сопротивления воздуха. При движении на подъем дополнительно надо преодолевать силу сопротивления вертикальному перемещению центра тяжести автомобиля, при ускоренном движении – силу сопротивления инерции автомобиля.

На автомобиль, как при движении, так и в неподвижном состоянии действует сила тяжести. Силой тяжести автомобиля является его масса, измеряется она в килограммах и действует параллельно по вертикали вниз, прижимая колеса к дороге (рис.1).

Рис.1. Силы, действующие на автомобиль при движении на подъем.

Сила тяжести автомобиля, стоящего неподвижно на горизонтальной плоскости, направлена вертикально вниз и распределяется по осям и колесам. Эти составляющие силы по своей величине обратно пропорциональны расстояниям между точками их приложения и точкой приложения силы тяжести автомобиля (центра тяжести). Определим центр тяжести автомобиля ЗИЛ-130. Собственная масса автомобиля ЗИЛ-130 составляет 4300 кг и распределяется по его осям: на переднюю – 2120 кг, заднюю – 2180 кг, при расстоянии между осями 3,8 м. Расстояние от центра тяжести до передней оси будет равно 2120×3,8/430 = 1,8 м, до задней оси: 2180×3,8/4300 = 2 м.

Для того чтобы узнать, как распределяется масса автомобиля на колеса, надо силу тяжести, приходящуюся на каждую ось, разделить на количество колес. Следовательно, на каждое переднее колесо будет действовать сила тяжести, равная 2120/2 = 1010 кг, на каждое заднее колесо: 2180/4 = 540,5 кг.

Как видно, колеса автомобиля могут быть прижаты к дороге с различной силой, что зависит от массы груза и его распределения в кузове. Чем ниже расположен центр тяжести, тем устойчивее автомобиль против опрокидывания. При неравномерном укладывании груза центр тяжести может сместиться вперед, назад или в сторону, при этом нарушается устойчивость и управляемость автомобиля. Положение центра тяжести некоторых автомобилей приведено в таблице:

Высота расположения центра тяжести, мм

Расстояние от центра тяжести до передней оси, мм

с полной
нагрузкой

445
714
1252
1000
1200
1450
1126
1040
1165
1380
1342

Читайте также:  Куда поехать на новогодние каникулы 5 сказочных мест - Лайфхакер

Сила сцепления колес с дорогой возникает между ведущими колесами автомобиля и дорогой. Она равна произведению коэффициента сцепления на сцепную массу, то есть на массу автомобиля, приходящуюся на его ведущие колеса. В автомобиле со всеми ведущими осями сцепной массой является полная масса автомобиля.

Коэффициент сцепления – это отношение силы сцепления колеса с дорогой к массе, приходящейся на данное колесо, и он будет равен:

где φ – коэффициент сцепления;
Рсц – сила сцепления колеса с дорогой;
Gк – масса, которая прижимает колесо к дороге.

Коэффициент сцепления имеет решающее значение при торможении автомобиля. Чем выше коэффициент сцепления, тем больше может быть интенсивность торможения автомобиля.

Величина коэффициента сцепления колес автомобиля с дорогой имеет существенное значение для эксплуатации транспортных средств и безопасности дорожного движения. При низком коэффициенте сцепления – в этом случае трогание автомобиля с места очень затруднено, так как оно будет сопровождаться пробуксовкой, а в свою очередь торможение – скольжением колес. В результате автомобиль не всегда удается тронуть с места, а при необходимости торможения происходят резкое значительное увеличение тормозного пути и не исключено возникновение заноса. Среднее значение коэффициента сцепления шин, имеющих неизношенный дорожный рисунок протектора, с дорогой приведено в таблице:

на сухой поверхности

на мокрой поверхности

Особенно сильно снижается коэффициент сцепления на дороге после первого дождя, когда образуется еще не смытая пленка жидкой грязи. Заснеженная или обледенелая дорога особенно опасна в теплую погоду, когда поверхность проезжей части подтаивает.

При увеличении скорости движения коэффициент сцепления снижается, в особенности на мокрой дороге, так как выступы рисунка протектора шины не успевают продавливать пленку влаги. Здесь важно исправное состояние рисунка протектора шины.

Повышенное давление воздуха в шинах уменьшает их опорную поверхность, вследствие чего давление возрастает настолько, что при трогании с места и при торможении сцепление колес с дорогой уменьшается.

В связи с тем, что много дорожно-транспортных происшествий происходит из-за плохого сцепления, водители при управлении автомобилем должны уметь оценивать величину коэффициента сцепления и выбирать скорость движения и приемы управления в соответствии с дорожными и погодными условиями.

Тяговая сила на ведущие колеса (Рт) расходуется на отдельные виды сопротивления движению и может быть выражена следующей формулой:

Рт = Рк + Рв ± Рп + Ри,

где Рк – сила сопротивления качения автомобиля, кг;
Рв – сила сопротивления воздуха, кг;
Рп – сила сопротивления подъему, кг;
Ри – сила инерции автомобиля, кг.

Сила сопротивления качению колес автомобиля складывается из деформации шин и грунта, трения шин о дорогу, трения в подшипниках передних колес, в рессорах и рессорных серьгах или в амортизаторах подвески автомобиля. Определение всех этих сил в различных условиях движения автомобиля очень сложно. Поэтому все эти сопротивления учитываются общим коэффициентом, установленным экспериментальным путем. Этот коэффициент называется коэффициентом сопротивления качению автомобиля.

Коэффициент сопротивления качению шин на асфальтированном покрытии равен 0,019-0,020; на гравийном покрытии – 0,02-0,025; на песке – 0,1-0,3.

Сила сопротивления воздуха слагается из любого движения встречного воздуха, разрежения за движущимся автомобилем, трения частиц воздуха о поверхность кузова автомобиля. Силу сопротивления воздуха можно определить приближенно перемножением площади проекции автомобиля на коэффициент сопротивления воздуха и скорость движения автомобиля. Коэффициент сопротивления воздуха определяется в килограммах на 1 м 2 площади проекции автомобиля при скорости движения 1 м/сек. Сила сопротивления воздуха зависит от величины лобовой поверхности автомобиля, его формы, а также скорости движения. С увеличением скорости автомобиля сила сопротивления воздуха возрастает пропорционально квадрату скорости движения, то есть если скорость возрастает в два раза, то сопротивление воздуха увеличивается в четыре раза.

Мощность, затрачиваемая на сопротивление воздуха, с увеличением скорости движения автомобиля возрастает пропорционально кубу скорости. Из этого следует, что груз на грузовых автомобилях надо распределять равномерно по поверхности платформы, а также не развивать высоких скоростей.

Сила, затрачиваемая автомобилем на преодоление подъема, равна массе автомобиля, умноженной на величину угла подъема.

Чем круче подъем, тем больше сила, затрачиваемая на его преодоление. При движении автомобиля под уклон, наоборот, возникает сила, способствующая ускорению движения автомобиля. При подъезде к подъему необходимо правильно оценить возможность преодоления подъема. Если подъем продолжительный, его преодолевают на пониженной передаче, переключившись на нее в начале подъема. При движении автомобиля под уклон, наоборот, возникает сила, способствующая ускорению движения автомобиля. Вследствие этого на крутых спусках рекомендуется включить ту передачу, на которой можно осуществить подъем.

Ссылка на основную публикацию
Сигнализация Шерхан магикар
Инструкция к сигнализации Scher-Khan Magicar 7 с автозапуском программирование, настройка по времени Противоугонный комплекс Sherhan Magicar является надежным вариантом для...
Сигнализация StarLine A93 инструкция по эксплуатации, автозапуск, установка, подключение
Сигнализация starline a93 инструкция по эксплуатации брелка - советы по настройке и установке функци Автор: Максим Марков Дата: 2020-01-24 Описание...
Сигнализация Starline B94 (S) 2Can инструкция по эксплуатации, установке, автосигнализация с автозап
Starline B94 инструкция по установке и эксплуатации сигнализации и брелка, gsm, gps Только выбрав надежную автосигнализацию, владелец авто может не...
Сигналы регулировщика Автошкола водитель ABC
Жесты регулировщика в картинках и с пояснениями Здравствуйте уважаемые посетители блога. Недавно мы с Вами узнали, что такое срок давности...
Adblock detector