Химические свойства серной кислоты; концентрированной и разбавленной (9 класс, химия)

Азотная кислота Snab365

Описание и свойства

Азотная кислота (HNO3) является сильной кислотой с едкими, растворяющими и окисляющими свойствами.

Азотная кислота 70% представляет собой прозрачную или почти бесцветную жидкость с резким запахом.

Концентрированная азотная кислота легко разлагается (особенно под действием света и тепла) и часто имеет желтоватый или красноватый оттенок из-за растворенного в ней диоксида азота (NO2).

Чистая азотная кислота, содержащая свободный диоксид азота, называется дымящей азотной кислотой. Она обладает сильным окислительным эффектом и может способствовать возгоранию некоторых легковоспламеняющихся веществ. Например, соломы или древесных опилок.

100% красная (дымящая) азотная кислота в чистом виде бесцветна, если ее хранить в холодильнике, исключая попадание воздуха. При контакте с воздухом дымящаяся азотная кислота быстро разлагается с образованием сильно токсичного диоксида азота.

Азотная кислота, которая окрашена в желтый цвет растворенным диоксидом азота, может быть обесцвечена небольшим количеством мочевины или нитрата мочевины.

Соли азотной кислоты называются нитратами (селитра). На рынке в основном представлены соли калия и натрия – нитрат калия и нитрат натрия.

Азотная кислота выпускается производителями в различных концентрациях:

  • Дымящая азотная кислота (чистая, холодная) – от 85% до 100%
  • Концентрированная азотная кислота: среднее – 69% (от 68% до 70%)
  • Азотная кислота (обычная, возможно без указания процентного содержания) – 65%
  • Разбавленная азотная кислота – 25%

Растворение металлов

Азотная кислота растворяет большинство металлов. Исключение составляют только драгоценные металлы: золото, платина и иридий.

Некоторые металлы (алюминий, титан, цирконий, гафний, ниобий, тантал и вольфрам) сопротивляются действию азотной кислоты, образуя непроницаемый оксидный слой на металле.

Поскольку таким образом можно было разделить золото и серебро, азотную кислоту раньше называли «разделительной водой».

При смешивании с соляной кислотой образуется так называемая «царская водка», которая способна растворить любые драгоценные металлы.

История возникновения

Вполне возможно, что арабские алхимики производили азотную кислоту еще до средневековья. Производство царской водки из азотной кислоты и хлорида аммония предположительно практиковалось арабскими алхимиками в 7 или 8 веке.

В 9-м веке арабский алхимик Гебер добывал азотную кислоту путем сухого нагрева селитры.

В 13 веке Альбертус Магнус использовал азотную кислоту в качестве «разделительной воды» для производства золота.

Производство серной кислоты и нитрата калия, которое до сих пор широко используется в лабораторных условиях, восходит к Иоганну Рудольфу Глауберу (1604-1670). Он произвел чистый нитрит, перегоняя селитру с серной кислотой.

Глаубер был также первым, кто разработал процесс приготовления царской водки.

Производство

Азотная кислота производится в промышленных масштабах, начиная с 1908 года.

В лабораторном масштабе дымящая азотная кислота может быть приготовлена ​​путем взаимодействия концентрированной серной кислоты с нитратами щелочных металлов. До 1908 года азотная кислота была извлечена этим способом с использованием нитрата натрия (чилийская селитра или азотнокислый натрий).

Использование

Азотная кислота является важным промежуточным продуктом для производства удобрений и других химических соединений. Например, фосфорной кислоты, щавелевой кислоты, красителей и лекарств.

Азотная кислота является одним из важнейших сырьевых материалов в химической промышленности.

Она служит:

  • в качестве разделительной воды для разделения золота и серебра (серебро растворяется);
  • в смеси с соляной кислотой (царская водка) для растворения золота;
  • для травления и обжига металлов (графические и гальванические технологии);
  • для нитрования органических веществ при производстве красителей, лекарств, взрывчатых и дезинфицирующих средств;
  • в форме сложных эфиров для производства взрывчатых веществ;
  • для полировки металлов;
  • в медицине для лечения бородавок (входит в состав препаратов).

Поскольку азотная кислота может преобразовывать аминогруппы в основаниях (аденин, тимин, гуанин, цитозин) ДНК в гидроксильные группы, она используется для генерации мутаций в ДНК. Из-за этого свойства азотной кислоты она считается опасным канцерогенным веществом.

Читайте также:  Молитва водителя в дорогу на автомобиле - сильная молитва о помощи в пути

Ювелиры используют азотную кислоту в различных концентрациях и в сочетании с соляной кислотой в качестве тестовой кислоты для определения содержания золота в ювелирных изделиях.

Воздействие на организм человека

Раствор и пары азотной кислоты оказывают сильное коррозионное воздействие на кожу, глаза и слизистые оболочки.

Вдыхание паров приводит к бронхиальному катару, пневмонии и прижиганию альвеол. Что в итоге может привести к отеку легких и смерти.

При кратковременном вдыхании кислоты возможен сильный кашель (до рвоты), ангина, ожег слизистых горла, сильная головная боль.

Кислоты. Химические свойства и способы получения

Перед изучением этого раздела рекомендую прочитать следующую статью:

Кислоты – сложные вещества, которые при взаимодействии с водой образуют в качестве катионов только ионы Н + (или Н3О + ).

По растворимости в воде кислоты можно поделить на растворимые и нерастворимые . Некоторые кислоты самопроизвольно разлагаются и в водном растворе практически не существуют (неустойчивые) . Подробно про классификацию кислот можно прочитать здесь.

Получение кислот

1. Взаимодействие кислотных оксидов с водой. При этом с водой реагируют при обычных условиях только те оксиды, которым соответствует кислородсодержащая растворимая кислота.

кислотный оксид + вода = кислота

Например , оксид серы (VI) реагирует с водой с образованием серной кислоты:

При этом оксид кремния (IV) с водой не реагирует:

2. Взаимодействие неметаллов с водородом. Таким образом получают только бескислородные кислоты.

Неметалл + водород = бескислородная кислота

Например , хлор реагирует с водородом:

H2 0 + Cl2 0 → 2 H + Cl —

3. Электролиз растворов солей. Как правило, для получения кислот электролизу подвергают растворы солей, образованных кислотным остатком кислородсодержащих кислот. Более подробно этот вопрос рассмотрен в статье Электролиз.

Например , электролиз раствора сульфата меди (II):

4. Кислоты образуются при взаимодействии других кислот с солями. При этом более сильная кислота вытесняет менее сильную.

Например: карбонат кальция CaCO3 (нерастворимая соль угольной кислоты) может реагировать с более сильной серной кислотой.

5. Кислоты можно получить окислением оксидов, других кислот и неметаллов в водном растворе кислородом или другими окислителями.

Например , концентрированная азотная кислота окисляет фосфор до фосфорной кислоты:

Химические свойства кислот

1. В водных растворах кислоты диссоциируют на катионы водорода Н + и анионы кислотных остатков. При этом сильные кислоты диссоциируют почти полностью, а слабые кислоты диссоциируют частично.

Например , соляная кислота диссоциирует почти полностью:

HCl → H + + Cl –

Если говорить точнее, происходит протолиз воды, и в растворе образуются ионы гидроксония:

HCl + H2O → H3O + + Cl –

Многоосновные кислоты диссоциируют cтупенчато.

Например , сернистая кислота диссоциирует в две ступени:

HSO3 – ↔ H + + SO3 2–

2. Кислоты изменяют окраску индикатора. Водный раствор кислот окрашивает лакмус в красный цвет, метилоранж в красный цвет. Фенолфталеин не изменяет окраску в присутствии кислот.

3. Кислоты реагируют с основаниями и основными оксидами .

С нерастворимыми основаниями и соответствующими им оксидами взаимодействуют только растворимые кислоты.

нерастворимое основание + растворимая кислота = соль + вода

основный оксид + растворимая кислота = соль + вода

Например , гидроксид меди (II) взаимодействует с растворимой бромоводородной кислотой:

При этом гидроксид меди (II) не взаимодействует с нерастворимой кремниевой кислотой.

С сильными основаниями (щелочами) и соответствующими им оксидами реагируют любые кислотами.

Щёлочи взаимодействуют с любыми кислотами — и сильными, и слабыми . При этом образуются средняя соль и вода. Эти реакции называются реакциями нейтрализации . Возможно и образование кислой соли, если кислота многоосновная, при определенном соотношении реагентов, либо в избытке кислоты. В избытке щёлочи образуется средняя соль и вода:

щёлочь(избыток)+ кислота = средняя соль + вода

щёлочь + многоосновная кислота(избыток) = кислая соль + вода

Например , гидроксид натрия при взаимодействии с трёхосновной фосфорной кислотой может образовывать 3 типа солей: дигидрофосфаты, фосфаты или гидрофосфаты.

При этом дигидрофосфаты образуются в избытке кислоты, либо при мольном соотношении (соотношении количеств веществ) реагентов 1:1.

Читайте также:  Охрана труда и техника безопасности на предприятии

При мольном соотношении количества щелочи и кислоты 1:2 образуются гидрофосфаты:

В избытке щелочи, либо при мольном соотношении количества щелочи и кислоты 3:1 образуется фосфат щелочного металла.

4. Растворимые кислоты взаимодействуют с амфотерными оксидами и гидроксидами.

Растворимая кислота + амфотерный оксид = соль + вода

Растворимая кислота + амфотерный гидроксид = соль + вода

Например , уксусная кислота взаимодействует с гидроксидом алюминия:

5. Некоторые кислоты являются сильными восстановителями. Восстановителями являются кислоты, образованные неметаллами в минимальной или промежуточной степени окисления, которые могут повысить свою степень окисления (йодоводород HI, сернистая кислота H2SO3 и др.).

Например , йодоводород можно окислить хлоридом меди (II):

2H I — + 2 Cu +2 Cl2 → 2HCl + 2 Cu + Cl + I2 0

6. Кислоты взаимодействуют с солями.

Кислоты реагируют с растворимыми солями только при условии, что в продуктах реакции присутствует газ, вода, осадок или другой слабый электролит . Такие реакции протекают по механизму ионного обмена.

Кислота1 + растворимая соль1 = соль2 + кислота2/оксид + вода

Например , соляная кислота взаимодействует с нитратом серебра в растворе:

Ag + NO3 — + H + Cl — → Ag + Cl — ↓ + H + NO3

Кислоты реагируют и с нерастворимыми солями. При этом более сильные кислоты вытесняют менее сильные кислоты из солей .

Например , карбонат кальция (соль угольной кислоты), реагирует с соляной кислотой (более сильной, чем угольная):

5. Кислоты взаимодействуют с кислыми и основными солями. При этом более сильные кислоты вытесняют менее сильные из кислых солей. Либо кислые соли реагируют с кислотами с образованием более кислых солей.

кислая соль1 + кислота1 = средняя соль2 + кислота2/оксид + вода

Например , гидрокарбонат калия реагирует с соляной кислотой с образованием хлорида калия, углекислого газа и воды:

KHCO3 + HCl → KCl + CO2 + H2O

Ещё пример : гидрофосфат калия взаимодействует с фосфорной кислотой с образованием дигидрофосфата калия:

При взаимодействии основных солей с кислотами образуются средние соли. Более сильные кислоты также вытесняют менее сильные из солей.

Например , гидроксокарбонат меди (II) растворяется в серной кислоте:

Основные соли могут взаимодействовать с собственными кислотами. При этом вытеснения кислоты из соли не происходит, а просто образуются более средние соли.

Например , гидроксохлорид алюминия взаимодействет с соляной кислотой:

Al (OH) Cl2 + HCl → AlCl3 + H2O

6. Кислоты взаимодействуют с металлами.

При этом протекает окислительно-восстановительная реакция. Однако минеральные кислоты и кислоты-окислители взаимодействуют по-разному.

К минеральным кислотам относятся соляная кислота HCl, разбавленная серная кислота H2SO4, фосфорная кислота H3PO4, плавиковая кислота HF, бромоводородная HBr и йодоводородная кислоты HI.

Такие кислоты взаимодействуют только с металлами, расположенными в ряду активности до водорода:

При взаимодействии минеральных кислот с металлами образуются соль и водород:

минеральная кислота + металл = соль + H2

Например , железо взаимодействует с соляной кислотой с образованием хлорида железа (II):

Fe + 2 H + Cl → Fe +2 Cl2 + H2 0

Сероводородная кислота H2S, угольная H2CO3, сернистая H2SO3 и кремниевая H2SiO3 с металлами не взаимодействуют.

Кислоты-окислители (азотная кислота HNO3 любой концентрации и серная концентрированная кислота H2SO4(конц)) при взаимодействии с металлами водород не образуют, т.к. окислителем выступает не водород, а азот или сера. Продукты восстановления азотной или серной кислот бывают различными. Определять их лучше по специальным правилам. Эти правила подробно разобраны в статье Окислительно-восстановительные реакции. Я настоятельно рекомендую выучить их наизусть.

7. Некоторые кислоты разлагаются при нагревании.

Угольная H2CO3, сернистая H2SO3 и азотистая HNO2 кислоты разлагаются самопроизвольно, без нагревания:

Кремниевая H2SiO3, йодоводородная HI кислоты разлагаются при нагревании:

Азотная кислота HNO3 разлагается при нагревании или на свету:

Кислоты — классификация, свойства, получение и применение.

Кислоты (неорганические, минеральные) — это сложные соединения состоящие из катиона водорода (H + ) и аниона кислотного остатка(SO3 2- , SO4 2- , NO3 — и т.д).

Кислотам дали такое название не просто так. Большинство из них имеют кислый вкус. С некоторыми из них знаком каждый из вас. Это, например, уксусная кислота, которая есть в каждом доме, аскорбиновая кислота (она же витамин C), лимонная кислота и т.д. Но не стоит все кислоты пробовать на вкус. Кислоты являются очень едкими веществами. Даже всем нам привычная и известная аскорбиновая кислота в большой концентрации будет вредна нашему организму. А от более сильных кислот — серной, соляной и даже уксусной — можно получить очень сильные ожоги, вплоть до летального исхода. Поэтому при работе с кислотами нужно быть осторожными, а также соблюдать технику безопасности.

Читайте также:  FOB условия поставки Инкотермс 2010

Таблица названий некоторых кислот и их солей

Название кислоты Формула Название соли
Серная H2SO4 Сульфат
Сернистая H2SO3 Сульфит
Сероводородная H2S Сульфид
Соляная (хлористоводородная) HCl Хлорид
Фтороводородная (плавиковая) HF Фторид
Бромоводородная HBr Бромид
Йодоводородная HI Йодид
Азотная HNO3 Нитрат
Азотистая HNO2 Нитрит
Ортофософорная H3PO4 Фосфат
Угольная H2CO3 Карбонат
Кремниевая H2SiO3 Силикат
Уксусная CH3COOH Ацетат

Классификация кислот

По содержанию кислорода
Кислородсодержащие (H2SO4) Бескислородные (HCl)
По количеству содержащихся катионов водорода (H+)
Одноосновные (HCl) Двухосновные (H2SO4) Трёхосновные (H3PO4)

Понятие «одноосновная кислота» произошло по причине того, что для нейтрализации одной молекулы одноосновной кислоты нам понадобится одна молекула основания. для двухосновной — соответственно две молекулы и т. д.

По растворимости (в воде)
Растворимые (HCl) Нерастворимые (H2SiO3)
По силе (степени диссоциации)
Сильные (H2SO4) Слабые (CH3COOH)
По летучести
Летучие (H2S) Нелетучие (H2SO4)
По устойчивости
Устойчивые (H2SO4) Неустойчивые (H2CO3)

Свойства кислот

Изменение цвета индикаторов в кислой среде

Индикатор Нейтральная среда Кислая среда
Метилоранж оранжевый красный
Лакмус фиолетовый красный
Фенолфталеин бесцветный бесцветный
Бромтимоловый синий зеленый желтый
бромкрезоловый зеленый синий желтый

Химические свойства кислот

  • Взаимодействие с металлами (в ряду активности находящихся до водорода), протекает с выделением газообразного водорода и образованием солей:

H2SO4 + 2Na → Na2SO4 + H2

Металлы, находящиеся в ряду активности после водорода, не вступают в реакцию с кислотой (кроме концентрированной серной кислоты).

Азотная и концентрированная серная кислоты проявляют свойства окислителей, и продукты реакций будут зависеть от концентрации, температуры и природы восстановителя.

  • Взаимодействуют с оксидами основных и амфотерных металлов с образованием солей и воды:

H2SO4 + MgO → MgSO4 + H2O

  • С основаниями, с образованием солей и воды (так называемая реакция нейтрализации):

H2SO4 + 2NaOH → Na2SO4 + H2O

  • Кислоты могут взаимодействовать с солями, если в результате реакции будет образовываться нерастворимая соль, или выделяться газ:

H2SO4 + K2CO3 → K2SO4 + H2O + CO2

  • Сильные кислоты могут вытеснять из солей более слабые кислоты:

3H2SO4 + 2K3PO4 → 3K2SO4 + H3PO4

Получение кислот

  • Взаимодействие кислотного оксида с водой:

H2O + SO3 →H2SO4

  • Взаимодействие водорода и неметалла:

H2 + Cl2 → 2HCl

  • Вытеснение слабой кислоты из солей, более сильной кислотой:

3H2SO4 + 2K3PO4 → 3K2SO4 + H3PO4

Применение кислот

В настоящее время, минеральные и органические кислоты находят множество сфер применения.

Серная кислота (H2SO4), находит широкое применение в химической технологии, для производства лакокрасочных материалов, производстве минеральных удобрений, в пищевой промышленности (пищевая добавка Е513), в качестве электролита в производстве аккумуляторных батарей.

Раствор двухромовокислого калия в серной кислоте (хромовая смесь) используются в лабораториях для мытья химической посуды. Являясь сильным окислителем, хромка позволяет отмывать посуду от следов загрязнений органическими веществами. Так же, хромовая смесь используется в органическом синтезе.

Борная кислота (H3BO3) используется в медицине как антисептик, в качестве флюса при пайке металлов, как борсодержащее удобрение, в домашнем хозяйстве используется как средство от тараканов.

Широко известны в домашнем использовании при выпечке уксусная и лимонная кислоты. Также в быту их используют для удаления накипи.

Знакомая всем с детства аскорбиновая кислота, более известная в народе как витамин С, применяется при лечении простудных заболеваний.

Азотная кислота (HNO3) находит применение при производстве взрывчатых веществ, при производстве минеральных азотсодержащих удобрений (аммиачная, калиевая селитра), в производстве лекарственных средств (нитроглицерин).

Ссылка на основную публикацию
Характеристики двигателя M52B25 M52TUB25 лучшее масло, какой ресурс, количество клапанов, мощность
Двигатели BMW M52TU и M54 (описание моторов) - BMW 3 BLOG Двигатели M52 претерпели значительную эволюцию осенью 1998 года (обозначение...
Формы для литья рыболовных грузил как их сделать своими руками для разных видов удочек при изготовле
Свинцовое грузило своими руками О рыбалке Дабы изготовить самостоятельно свинцовое грузило, возможно воспользоваться простым ветхим аккумулятором. Для этого из него...
Форсунки для сахарных центрифуг
Форсунки для сахарных центрифуг Сахарные центрифуги широко используются на всех сахарных заводах России для разделения сахарных смесей (утфеля). Центрифуги бывают...
Характеристики двигателя Z18XER A18XER лучшее масло, какой ресурс, количество клапанов, мощность, о
Opel Z18XER 1 The Opel Z18XER is a 1.8 l (1,796 cc, 109.6 cu-in) straight-four four-stroke natural aspirated gasoline engine...
Adblock detector