Фотонный космический транспорт — Posrednik CG

Ионная тяга как человечество использует электрические двигатели для полетов в космос

Ионный двигатель является если не самым перспективным электрическим космическим двигателем, то точно одним из самых используемых сегодня в отрасли. «Хайтек» рассказывает, как работают ионные двигатели, зачем их используют и при чем тут Константин Циолковский.

Сейчас на околоземной орбите находятся тысячи искусственных спутников, выведенных туда гигантскими (или не очень) ракетами-носителями с мощными реактивными двигателями на химическом топливе. Пока человечество не смогло придумать альтернативу таким двигателям, поскольку для преодоления гравитации Земли и развития первой космической скорости необходима мощная тяга: ее могут дать только обычные двигатели.

При этом уже в космосе спутники используют другой тип двигателей — электрические. Самым используемым является ионный двигатель — устройство, принцип работы которого основан на создании реактивной тяги на базе ионизированного газа, разогнанного до высоких скоростей в электрическом поле.

Типы электрических и альтернативных двигателей:

  • Ионные и плазменные накопители

Тип реактивного двигателя, который использует электрическую энергию для получения тяги от топлива: ионизированного газа. Многие из таких спутников не имеют ракетные сопла.

Электродвигатели для космических кораблей могут быть сгруппированы в три семейства в зависимости от типа силы, используемой для ускорения ионов плазмы: электростатический (собственно, классический ионный двигатель), электротермический (в них электромагнитные поля используются для генерации плазмы, что приводит к повышению температуры топлива, а тепловая энергия, передаваемая газообразному топливу, преобразуется в кинетическую) и электромагнитный (или плазменный, тут ионы ускоряются путем воздействия электромагнитных полей, как правило, земного и искусственного у аппарата).

Это электрические двигатели, также использующие нехимическую энергию для своей работы, однако работающие по другим принципам, нежели ионные. Например, фотонный двигатель, позволяющий космическому кораблю перемещаться на энергии фотонов. Гипотетически так смогут работать космические аппараты, управляемые лазерными сигналами с Земли или Луны.

К этой же категории относятся эксперименты по созданию так называемого электродинамического троса, когда спутник может выбрасывать вокруг себя длинные металлические нити с разными электрическими зарядами.

Сейчас ученые разрабатывают еще несколько гипотетических видов двигателей, которые в будущем смогут давать энергию для движения космических спутников: вакуумный двигатель, двигатель внутренних радиочастот и устройство, которое будет брать энергию от полей самых маленьких частиц, например, бозонов. Работоспособность всех этих гипотез пока не доказана с точки зрения физики.

Первым человеком, который еще в 1911 году публично предложил идею создания ионного двигателя, стал российский и советский ученый, пионер космонавтики Константин Циолковский. При этом первый документ, в котором упоминается электрическая тяга для движения космических объектов, был за авторством другого пионера космонавтики, американского ученого Роберта Годдарда.

6 сентября 1906 года Годдард писал в своем дневнике, что сможет использовать энергию ионов для работы двигателей. Первые эксперименты с ионными двигателями были проведены Годдардом в Университете Кларка в 1916 году. В итоге ученый заявил, что сможет использовать их в полноценном формате только в условиях, приближенных к вакууму, тогда как в рамках тестирования их показывали при атмосферном давлении Земли.

Первый работающий ионный двигатель был построен инженером НАСА Горальдом Кауфманом только в 1959 году. В качестве топлива, в отличие от современных аналогичных двигателей, которые перерабатывают ионы газа ксенона, он использовал ртуть. Суборбитальные испытания двигателя прошли в 1964 году, когда в космос на ракете-разведчике был запущен научный зонд Sert 1 — первое в истории устройство, использующее конструкцию ионного двигателя в космосе. В 70-х годах США провели ряд повторных испытаний этой технологии.

Принцип работы ионного двигателя

Ионные двигатели используют пучки ионов — электрически заряженных атомов или молекул — для создания тяги. Основным рабочим телом ионизации является газ, иногда ртуть. В ионизатор подается это топливо, после чего туда же запускают высокоэнергетические электроны. В этой камере образуется смесь из положительных ионов и отрицательных электронов. После этого в камеру вводят специальный фильтр, который притягивает к себе отрицательные электроны, тогда как положительные ионы притягиваются к ряду сеток с большой разницей электростатических потенциалов (+1090 В на внутренней против -225 В на внешней). В результате такой мощной разницы ионы начинают разгоняться по кругу, пока не выбрасываются из устройства, ускоряя движение корабля. За ними выбрасываются и электроны, которые должны обезвредить ионы и не позволить им притягиваться обратно к двигателю.

Обычно источниками питания для ионных двигателей являются электрические солнечные панели. Однако в местах, куда солнечный свет не попадает, например, когда Земля закрывает Солнце, спутники могут использовать ядерную энергию. «Хайтек» подробно рассказывал о такой советской программе, спутники которой — с крошечными ядерными реакторами — до сих пор находятся на орбите захоронения Земли.

На сегодняшний день ионные двигатели необходимы спутникам, чтобы маневрировать в космосе, например, для изменения своего курса или уклонения от космического мусора. Существует также несколько проектов, предполагающих использование ионных двигателей для дальних космических путешествий.

Самый яркий пример использования ионных двигателей для дальних путешествий — автоматическая исследовательская миссия Dawn от НАСА. В сентябре 2007 года она была запущена для исследования астероида Веста и карликовой планеты Церера.

Dawn оборудована тремя ксеноновыми ионными двигателями NSTAR. Они установлены в нижней части аппарата: один вдоль оси, еще два — на передней и задней панелях. Принцип работы этих двигателей состоит в ускорении в электрическом поле ионов ксенонового топлива. Двигатели длиной в 33 см, диаметром сопла в 30 см и массой 8,9 кг разгоняют атомы до скорости в десять раз выше, чем могут это сделать современные химические двигатели. Ускорение и торможение обеспечивается за счет установленных на борту Dawn солнечных батарей и уровня подачи топлива.

Для полета Dawn было необходимо всего 3,25 мг топлива в секунду. Из 425 кг рабочего тела (ксенона), имеющегося на борту, на полет Земля — Веста предполагалось израсходовать 275 кг, на полет Веста — Церера — 110 кг.

Миссия Dawn стала не только одной из самых энергоэффективных в истории космонавтики, но и установила несколько рекордов скорости. 5 июня 2016 года — спустя девять лет после запуска — станция Dawn разогналась до 39 900 км/час (11,1 км/с).

1 ноября 2018 года НАСА официально закончила миссию Dawn, поскольку ионные двигатели полностью выработали топливо. Последние несколько лет инженеры НАСА занимаются разработкой новых двигателей, рассчитанных на увеличенное количество ксенона. В этих разработках пока есть сложность, поскольку увеличение веса станции за счет топлива негативно сказывается как на скорости передвижения аппарата, так и на дальности полета.

Еще одним космическим аппаратом, который использует ионные двигатели для дальних полетов, стала японская исследовательская станция по изучению астероида Рюгу «Хаябуса-2». Зонд, на котором установлены четыре ионных двигателя IES, может менять направление полета за счет этих двигателей. Они могут поворачиваться в разные стороны, но за счет электромеханической системы, питающейся от солнечных батарей. При этом ксенон массой в 73 кг хранится в 51-литровом топливном баке: такую конфигурацию удалось получить за счет того, что этот газ в полтора раза плотнее воды, и, соответственно, занимает меньше места.

Читайте также:  Снегоход Ямаха (Yamaha) Викинг 540, Вентура (Venture), Мульти-пурпос, VK540E, Браво, Профессионал-2

Пока космические агентства исследуют возможное применение ионных двигателей в будущем. НАСА запланировало даже установить ионный двигатель нового поколения ISS Vasimr на МКС. Однако в 2015 году отменило этот проект, заявив, что пока «МКС не является идеальной демонстрационной площадкой для работы двигателей такого типа». Дело в том, что Vasimr должен был стать первым полноценным электротермическим ракетным двигателем, который позволил бы создавать тягу, аналогичную химическим двигателям. Это позволило бы в будущем использовать его даже для запусков ракет-носителей с Земли.

НАСА пришло к решению отменить тестирование Vasimr, поскольку ученые до конца не смогли найти источник энергии, на котором бы работал этот двигатель. Самым перспективным источником энергии могла стать термоядерная установка, однако ее использование на МКС могло быть небезопасной.

Из-за этого сейчас ионные двигатели продолжают рассматриваться в основном в качестве дополнительных двигателей на различных спутниках, с помощью которых зонды смогут совершать маневры в космосе. Другим перспективным направлением для использования двигателей такого типа может стать космическая уборка. На орбите Земли с каждым годом появляется все больше космического мусора, а спутники с ионными двигателями могут стать идеальным решением этой проблемы.

7 космических двигателей будущего

Современные ракетные двигатели неплохо справляются с задачей выведения техники на орбиту, но совершенно непригодны для длительных космических путешествий. Поэтому уже не первый десяток лет ученые работают над созданием альтернативных космических двигателей, которые могли бы разгонять корабли до рекордных скоростей. Давайте рассмотрим семь основных идей из этой области.

EmDrive

Чтобы двигаться, надо от чего-то оттолкнуться – это правило считается одним из незыблемых столпов физики и космонавтики. От чего конкретно отталкиваться – от земли, воды, воздуха или реактивной струи газа, как в случае ракетных двигателей, – не так важно.

Хорошо известен мысленный эксперимент: представьте, что космонавт вышел в открытый космос, но трос, связывающий его с кораблем, неожиданно порвался и человек начинает медленно улетать прочь. Все, что у него есть, – это ящик с инструментами. Каковы его действия? Правильный ответ: ему нужно кидать инструменты в сторону от корабля. Согласно закону сохранения импульса, человека отбросит от инструмента ровно с той же силой, с какой и инструмент от человека, поэтому он постепенно будет перемещаться по направлению к кораблю. Это и есть реактивная тяга – единственный возможный способ двигаться в пустом космическом пространстве. Правда, EmDrive, как показывают эксперименты, имеет некоторые шансы это незыблемое утверждение опровергнуть.

Создатель этого двигателя – британский инженер Роджер Шаер, основавший собственную компанию Satellite Propulsion Research в 2001 году. Конструкция EmDrive весьма экстравагантна и представляет собой по форме металлическое ведро, запаянное с обоих концов. Внутри этого ведра расположен магнетрон, излучающий электромагнитные волны, – такой же, как в обычной микроволновке. И его оказывается достаточно, чтобы создавать очень маленькую, но вполне заметную тягу.

Сам автор объясняет работу своего двигателя через разность давления электромагнитного излучения в разных концах «ведра» – в узком конце оно меньше, чем в широком. Благодаря этому создается тяга, направленная в сторону узкого конца. Возможность такой работы двигателя не раз оспаривалась, но во всех экспериментах установка Шаера показывает наличие тяги в предполагаемом направлении.

В числе экспериментаторов, опробовавших «ведро» Шаера, такие организации, как NASA, Технический университет Дрездена и Китайская академия наук. Изобретение проверяли в самых разных условиях, в том числе и в вакууме, где оно показало наличие тяги в 20 микроньютонов.

Это очень мало относительно химических реактивных двигателей. Но, учитывая то, что двигатель Шаера может работать сколь угодно долго, так как не нуждается в запасе топлива (работу магнетрона могут обеспечивать солнечные батареи), потенциально он способен разгонять космические корабли до огромных скоростей, измеряемых в процентах от скорости света.

Чтобы полностью доказать работоспособность двигателя, необходимо провести еще множество измерений и избавиться от побочных эффектов, которые могут порождаться, к примеру, внешними магнитными полями. Однако уже выдвигаются и альтернативные возможные объяснения аномальной тяги двигателя Шаера, которая, в общем-то, нарушает привычные законы физики.

К примеру, выдвигаются версии, что двигатель может создавать тягу благодаря взаимодействию с физическим вакуумом, который на квантовом уровне имеет ненулевую энергию и заполнен постоянно рождающимися и исчезающими виртуальными элементарными частицами. Кто в итоге окажется прав – авторы этой теории, сам Шаер или другие скептики, мы узнаем в ближайшем будущем.

Солнечный парус

Как говорилось выше, электромагнитное излучение оказывает давление. Это значит, что теоретически его можно преобразовывать в движение – например, с помощью паруса. Аналогично тому, как корабли прошлых веков ловили в свои паруса ветер, космический корабль будущего ловил бы в свои паруса солнечный или любой другой звездный свет.

Проблема, однако, в том, что давление света крайне мало и уменьшается с увеличением расстояния от источника. Поэтому, чтобы быть эффективным, такой парус должен иметь очень малый вес и очень большую площадь. А это увеличивает риск разрушения всей конструкции при встрече с астероидом или другим объектом.

Попытки строительства и запуска солнечных парусников в космос уже имели место – в 1993 году тестирование солнечного паруса на корабле «Прогресс» провела Россия, а в 2010 году успешные испытания по пути к Венере осуществила Япония. Но еще ни один корабль не использовал парус в качестве основного источника ускорения. Несколько перспективнее в этом отношении выглядит другой проект – электрический парус.

Электрический парус

Солнце излучает не только фотоны, но также и электрически заряженные частицы вещества: электроны, протоны и ионы. Все они формируют так называемый солнечный ветер, ежесекундно уносящий с поверхности светила около одного миллиона тонн вещества.

Солнечный ветер распространяется на миллиарды километров и ответственен за некоторые природные явления на нашей планете: геомагнитные бури и северное сияние. Земля от солнечного ветра защищается с помощью собственного магнитного поля.

Солнечный ветер, как и ветер воздушный, вполне пригоден для путешествий, надо лишь заставить его дуть в паруса. Проект электрического паруса, созданный в 2006 году финским ученым Пеккой Янхуненом, внешне имеет мало общего с солнечным. Этот двигатель состоит из нескольких длинных тонких тросов, похожих на спицы колеса без обода.

Благодаря электронной пушке, излучающей против направления движения, эти тросы приобретают положительный заряженный потенциал. Так как масса электрона примерно в 1800 раз меньше, чем масса протона, то создаваемая электронами тяга не будет играть принципиальной роли. Не важны для такого паруса и электроны солнечного ветра. А вот положительно заряженные частицы – протоны и альфа-излучение – будут отталкиваться от тросов, создавая тем самым реактивную тягу.

Хотя эта тяга будет примерно в 200 раз меньше, чем таковая у солнечного паруса, проект заинтересовал Европейское космическое агентство. Дело в том, что электрический парус гораздо проще сконструировать, произвести, развернуть и эксплуатировать в космосе. Кроме того, с помощью гравитации парус позволяет также путешествовать к источнику звездного ветра, а не только от него. А так как площадь поверхности такого паруса гораздо меньше, чем у солнечного, то для астероидов и космического мусора он уязвим куда меньше. Возможно, первые экспериментальные корабли на электрическом парусе мы увидим уже в следующие несколько лет.

Читайте также:  Дорабатываем то, что не сделали на заводе Logan

Ионный двигатель

Поток заряженных частиц вещества, то есть ионов, излучают не только звезды. Ионизированный газ можно создать и искусственно. В обычном состоянии частицы газа электрически нейтральны, но, когда его атомы или молекулы теряют электроны, они превращаются в ионы. В общей своей массе такой газ все еще не имеет электрического заряда, но его отдельные частицы становятся заряженными, а значит, могут двигаться в магнитном поле.

В ионном двигателе инертный газ (обычно используется ксенон) ионизируется с помощью потока высокоэнергетических электронов. Они выбивают электроны из атомов, и те приобретают положительный заряд. Далее получившиеся ионы ускоряются в электростатическом поле до скоростей порядка 200 км/с, что в 50 раз больше, чем скорость истекания газа из химических реактивных двигателей. Тем не менее современные ионные двигатели обладают очень маленькой тягой – около 50–100 миллиньютонов. Такой двигатель не смог бы даже сдвинуться со стола. Но у него есть серьезный плюс.

Большой удельный импульс позволяет значительно сократить расходы топлива в двигателе. Для ионизации газа используется энергия, полученная от солнечных батарей, поэтому ионный двигатель способен работать очень долго – до трех лет без перерыва. За такой срок он успеет разогнать космический аппарат до скоростей, которые химическим двигателям и не снились.

Ионные двигатели уже не раз бороздили просторы Солнечной системы в составе различных миссий, но обычно в качестве вспомогательных, а не основных. Сегодня как о возможной альтернативе ионным двигателям все чаще говорят про двигатели плазменные.

Плазменный двигатель

Если степень ионизации атомов становится высокой (порядка 99%), то такое агрегатное состояние вещества называется плазмой. Достичь состояния плазмы можно лишь при высоких температурах, поэтому в плазменных двигателях ионизированный газ разогревается до нескольких миллионов градусов. Разогрев осуществляется с помощью внешнего источника энергии – солнечных батарей или, что более реально, небольшого ядерного реактора.

Горячая плазма затем выбрасывается через сопло ракеты, создавая тягу в десятки раз большую, чем в ионном двигателе. Одним из примеров плазменного двигателя является проект VASIMR, который развивается еще с 70-х годов прошлого века. В отличие от ионных двигателей, плазменные в космосе еще испытаны не были, но с ними связывают большие надежды. Именно плазменный двигатель VASIMR является одним из основных кандидатов для пилотируемых полетов на Марс.

Термоядерный двигатель

Укротить энергию термоядерного синтеза люди пытаются с середины ХХ века, но пока что сделать это так и не удалось. Тем не менее управляемый термоядерный синтез все равно очень привлекателен, ведь это источник громадной энергии, получаемой из весьма дешевого топлива – изотопов гелия и водорода.

В настоящий момент существует несколько проектов конструкции реактивного двигателя на энергии термоядерного синтеза. Самой перспективной из них считается модель на основе реактора с магнитным удержанием плазмы. Термоядерный реактор в таком двигателе будет представлять собой негерметичную цилиндрическую камеру размером 100–300 метров в длину и 1–3 метра в диаметре. В камеру должно подаваться топливо в виде высокотемпературной плазмы, которая при достаточном давлении вступает в реакцию ядерного синтеза. Располагающиеся вокруг камеры катушки магнитной системы должны удерживать эту плазму от контакта с оборудованием.

Зона термоядерной реакции располагается вдоль оси такого цилиндра. С помощью магнитных полей экстремально горячая плазма проистекает через сопло реактора, создавая огромную тягу, во много раз большую, чем у химических двигателей.

Двигатель на антиматерии

Все окружающее нас вещество состоит из фермионов – элементарных частиц с полуцелым спином. Это, к примеру, кварки, из которых состоят протоны и нейтроны в атомных ядрах, а также электроны. При этом у каждого фермиона есть своя античастица. Для электрона таковой выступает позитрон, для кварка – антикварк.

Античастицы имеют ту же массу и тот же спин, что и их обычные «товарищи», отличаясь знаком всех остальных квантовых параметров. Теоретически античастицы способны составлять антивещество, но до сих пор нигде во Вселенной антивещество зарегистрировано не было. Для фундаментальной науки является большим вопросом, почему его нет.

Но в лабораторных условиях можно получить некоторое количество антивещества. К примеру, недавно был проведен эксперимент по сравнению свойств протонов и антипротонов, которые хранились в магнитной ловушке.

При встрече антивещества и обычного вещества происходит процесс взаимной аннигиляции, сопровождаемый выплеском колоссальной энергии. Так, если взять по килограмму вещества и антивещества, то количество выделенной при их встрече энергии будет сопоставимо со взрывом «Царь-бомбы» – самой мощной водородной бомбы в истории человечества.

Причем значительная часть энергии при этом выделится в виде фотонов электромагнитного излучения. Соответственно, возникает желание использовать эту энергию для космических перемещений путем создания фотонного двигателя, похожего на солнечный парус, только в данном случае свет будет генерироваться внутренним источником.

Но чтобы эффективно использовать излучение в реактивном двигателе, необходимо решить задачу создания «зеркала», которое было бы способно эти фотоны отразить. Ведь кораблю каким-то образом надо оттолкнуться, чтобы создать тягу.

Никакой современный материал попросту не выдержит рожденного в случае подобного взрыва излучения и моментально испарится. В своих фантастических романах братья Стругацкие решили эту проблему путем создания «абсолютного отражателя». В реальной жизни ничего подобного пока сделать не удалось. Эта задача, как и вопросы создания большого количества антивещества и его длительного хранения, – дело физики будущего.

Как работает ионный двигатель и где он применяется

Ученые уже придумали или готовятся придумать много новых типов двигателей для космических кораблей. Самые смелые предположения даже говорят про варп-двигатель, который должен разгонять корабль до скоростей, в несколько раз превышающих скорость света за счет искривления пространства в мощном гравитационном поле. Пока это только фантастика, которая скоро может стать перспективой. Зато ионные двигатели уже существуют и даже применяются. Они уже на данном этапе могут развивать скорости в несколько раз выше тех, что предлагают традиционные ракетные двигатели. Правда, они не могут отправить ракету в космос. Вот такие противоречия. Но как же тогда работает ионный двигатель и почему на данном этапе это действительно является технологией будущего?

Такой двигатель может разгоняться до очень больших скоростей.

Как работает ионный двигатель

Принцип работы ионного двигателя простой и сложный одновременно. Он заключается в ионизации газа, который разгоняется электростатическим полем для получения реактивной тяги и разгона космического корабля согласно третьему закону Ньютона.

Топливом или рабочим телом такого двигателя является ионизированный инертный газ (гелий, аргон, неон, ксенон, криптон, оганесон, радон). Впрочем, не все инертные газы стоит использовать в качестве топлива, поэтому, как правило, выбор ученых и исследователей падает на ксенон. Также рассматривается вариант использования ртути в качестве рабочего тела ионного двигателя

Читайте также:  Mercedes-Benz X-Class цена и характеристики, фотографии и обзор

Во время работы двигателя в камере образуется смесь из отрицательных электронов и положительных ионов. Так как электроны являются побочным продуктом, их надо отфильтровать. Для этого в камеру вводится трубка с катодными сетками для того, чтобы она притягивала к себе электроны.

Положительные ионы, наоборот, притягиваются к системе извлечения. После чего разгоняются между сетками, разница электростатических потенциалов которых составляет примерно 1 200 Вольт, и выбрасываются в качестве реактивной струи в пространство.

Схематичное изображение работы ионного двигателя.

Электроны, которые попали в катодную ловушку, должны быть удалены с борта корабля, чтобы он сохранял нейтральный заряд, а выброшенные ионы не притягивались обратно, снижая эффективность установки. Выброс электронов осуществляется через отдельное сопло под небольшим углом к струе ионов. Таким образом, что произойдет в их взаимодействии после покидания двигателя, уже не так важно, ведь они не мешают движению корабля.

Преимущества ионного двигателя для космического корабля

Ионы на выходе из двигателя разгоняются до очень высоких скоростей. В своем максимуме они могут достигать 210 км/с. При этом, химические ракетные двигатели не способны достигать и 10 км/с, находясь в диапазоне 3-5 км/с.

В нашем Telegram-чате все говорят про варп-двигатель, но давайте сначала с ионным разберемся.

Возможность достижения большого удельного импульса позволяет очень сильно сократить расход реактивной массы ионизированного газа в сравнении с аналогичным показателем для традиционного химического топлива. А еще, ионный двигатель может непрерывно работать более трех лет. Энергия, которая нужна для ионизации топлива берется от солнечных батарей — в космосе с этим проблем нет.

Если спешить с ускорением некуда, то ионный двигатель станет отличным вариантом.

Недостатки ионных двигателей

Возможность продолжительной работы ионного двигателя очень важна, так как он не способен развивать высокую тягу и моментально разгонять корабль до больших скоростей. В нынешних реализациях тяга ионных двигателей с трудом достигает 100 миллиньютонов.

Из-за такой конструктивной особенности, как минимум пока, такой двигатель не дает возможности стартовать с другой планеты, даже если у нее очень маленькая гравитация.

Получается, что использование таких двигателей для дальних путешествий пока невозможно без традиционных тяговых установок на химическом топливе. Зато, их совместное использование позволит гораздо более гибко пользоваться ускорением. Например, за счет обычного двигателя разгонять аппарат до более менее высокой скорости, а потом ускоряться еще больше за счет ионного двигателя.

Покорение дальнего космоса без новых технологий невозможно.

По сути, малая тяга на данный момент является главным недостатком таких двигателей, но ученые работают в этом направлении и в перспективе повысят его мощность, так как определенного прогресса удалось добиться уже сейчас.

Еще одной, пусть и не такой существенной, проблемой является надежность. В целом ионные двигатели достаточно надежны, но надо понимать, что их задача заключается в том, чтобы унести аппарат очень далеко и очень быстро. То есть работать он должен долго, чтобы не ставить под удар всю миссию. Поэтому, пока идут работы над увеличением мощности, разработчики стараются не забывать и о надежности.

Где используются ионные двигатели

Вам могло показаться, что ионные двигатели существуют только на бумаге и в лабораториях, но это не так. Они уже использовались, как минимум, в семи завершившихся миссиях и используются минимум в четырех действующих.

В том числе такие двигатели используются в рамках миссии BepiColombo, запущенной 20 октября 2018 года. В этой меркурианской миссии используются 4 ионных двигателя суммарной мощностью 290 миллиньютонов. Кроме этого, аппарат оснащен и химическим двигателем. Оба они в сочетании с гравитационными маневрами должны обеспечить выход корабля на орбиту Меркурия в качестве искусственного спутника.

Космический аппарат BepiColombo.

Использованием этих двигателей не брезгует и Илон Маск в своей программе Starlink, за счет этих двигателей корабль должен совершать небольшие маневры и уклоняться от космического мусора.

Сейчас планируется доставка на МКС ионной тяговой установки, которая позволит управлять положением станции в автоматическом режиме. Ее мощность подобрана исходя из доступной электрической мощности станции. Для большей надежности планируется так же доставка батарей, которые обеспечат 15 минут автономной работы двигателя.

Астрономы открыли новый тип взрывов в космосе

Но самым необычным проектом был ”Прометей”. Корабль в рамках этого проекта планировалось отправить к Юпитеру со скорость 90 км/c. Ионный двигатель корабля должен бал работать от ядерного реактора, но из-за технических трудностей в 2005 году проект закрыли.

Когда изобрели ионный двигатель

При всей перспективности ионного двигателя, первый раз его концепцию предложил еще в 1917 году Роберт Годдард. Только спустя почти 40 лет Эрнст Штулингер сопроводил концепцию необходимыми расчетами.

В 1957 году вышла статья Алексея Морозова под названием ”Об ускорении плазмы магнитным полем”, в которой он описал все максимально подробно. Это и дало толчок к развитию технологии и уже в 1964 году на советском аппарате ”Зонд-2” стоял такой двигатель для маневров на орбите.

Первый аппарат в космосе с ионным двигателем.

По сути, ионный двигатель является первым электрическим космическим двигателем, но его надо было дорабатывать и совершенствовать. Этим и занимались долгие годы, а в 1970 году прошло испытание, призванное продемонстрировать эффективность долговременной работы ртутных ионных электростатических двигателей в космосе. Показанный тогда малый КПД и низкая тяга надолго отбили желание американской космической промышленности пользоваться такими двигателями.

Ученые поймали очередной сигнал из космоса, но теперь он регулярно повторяется

В СССР разработки продолжались и после этого времени. И европейское, и американское космические агентства вернулись к этой идее. Сейчас исследования продолжаются, а выведенные на орбиту образцы двигателей, хоть и не могут быть главным тяговым элементом управления, но зато проходят ”проверку боем”. Собранная информация позволит увеличить мощность ионного двигателя. По разной информации, так удалось увеличить тягу самого мощного подобного двигателя более чем до 5 Н. Если это так, то все действительно не зря.

На данный момент Марс считается наиболее пригодной для жизни людей планетой. Она во многом похожа на нашу родную Землю: поверхность твердая, сутки длятся почти те же 24 часа и периодически там происходит смена времен года. Ученые уверены, что миллионы лет назад между нашей планетой и Марсом было еще больше схожих черт, вроде наличия воды и […]

Если вы живете в большом городе и решите выйти на улицу чтобы посмотреть на звездное небо, максимум, что вы увидите — это пара-тройка размытых точек. В общем, никакой романтики. Так что, если вам очень хочется насладиться россыпью огоньков и загадать желание под падающую звезду, необходимо выбраться за город. Идеально, если в выбранном вами месте не […]

Астрономы регулярно обнаруживают новые объекты. При этом в далеком прошлом человечество вообще ничего не знало о происходящем на просторах далекого, космического океана. Так что нет совершенно ничего удивительного в том, что каждый новый объект в телескопе – находка для астрономов. Наше нынешнее понимание того, как устроен космос, пригодится при попытках разобраться в новых, таинственных объектах, […]

Ссылка на основную публикацию
Формы для литья рыболовных грузил как их сделать своими руками для разных видов удочек при изготовле
Свинцовое грузило своими руками О рыбалке Дабы изготовить самостоятельно свинцовое грузило, возможно воспользоваться простым ветхим аккумулятором. Для этого из него...
Фонят колонки в машине при заведенном двигателе; Защита имущества
Почему фонит магнитола при заведенном двигателе в машине Автомобилисты нашего времени считают, что любой товар китайского производства это дешевая подделка,...
Фонят колонки на компьютере что делать и как исправить
Почему шипят колонки, на компьютере или телефоне, а также фонят, хрипят, гудят, что делать Причины, почему шипят колонки, могут скрываться...
Форсунки для сахарных центрифуг
Форсунки для сахарных центрифуг Сахарные центрифуги широко используются на всех сахарных заводах России для разделения сахарных смесей (утфеля). Центрифуги бывают...
Adblock detector