Физические свойства галогенов — ГДЗ по Химии

Физические свойства галогенов — ГДЗ по Химии

Во всех агрегатных состояниях галогены сохраняют молекулярное строение, а уменьшение летучести объясняется усилением межмолекулярного Ван-дер-ваальсова взаимодействия из-за большого числа электронов.

Молекула фтора имеет относительно не большую массу и достаточно подвижна, поэтому фтор при обычных условиях – газ с резким и очень неприятным запахом, растворимый в жидком HF. Твердый фтор (температура ниже -228 °C) имеет моноклинную структуру, а выше этой температуры – кубическую молекулярную решетку.

Обладает резким раздражающим запахом. Под давлением около 0,6 МПа уже при комнатной температуре превращается в жидкость. Сжиженный хлор обычно хранят и транспортируют в стальных баллонах или цистернах, т.к. сухой хлор с железом не взаимодействует. Жидкий хлор имеет желтую окраску.

Красно-бурая тяжелая жидкость с плотностью 3,10 г/см 3 . Пары брома имеют красную окраску (желто-бурый цвет). Обладает высокой упругостью паров.

При комнатной температуре представляет собой темно-фиолетовые кристаллы со слабым металлическим блеском, с ромбической молекулярной решеткой. Плотность йода 4,94 г/см 3 . Пары йода имеют фиолетовую окраску.

Скорость испарения йода при комнатной и тем более, повышенной температуре настолько велика, что если небольшое количество йода нагревать в достаточно большом сосуде, он успевает полностью испариться, прежде чем расплавится. Это явление известно как возгонка или сублимация. Но если парциальное давление паров йода превысит 80 мм. рт. ст., что происходит при нагревании его в сосуде небольшого объема, то подобно большинству обычных веществ, он сначала плавится, а закипает лишь при дальнейшем нагревании.

При охлаждении пары йода кристаллизуются, минуя жидкую фазу. Этим пользуются на практике для очистки йода от нелетучих примесей.

Астат

Твердое вещество металлического вида.

Основные характеристики простых веществ галогенов:

F Cl Br I At
Агрегатное состояние при о.у. (в скобках указан тип кристаллической решетки) Желтоватый газ. Желто-зеленый газ. Красно-бурая жидкость. Черно-фиолетовые кристаллы (молекулярная ромбическая). Черно-синие кристаллы (молекулярная).
Плотность, г/см 3 (293 °К) 1,696 3,214 3,1226 4,93
Т°пл., °C -219,5 -101,0 -7,25 113,7 244
Т°кип., °C -188,1 -34,1 59,2 185,5 317
Длина связи Hal-Hal, нм 0,141 0,199 0,228 0,267
ΔHдис. Hal2, кДж/моль (25 °C) 155 239,2 190,1 148,8 109
Стандартная энтальпия атомизации элементов ΔH°298, кДж/моль 79,55 121,21 111,91 106,69 90,85
ΔH°пл., кДж/моль 0,51 6,41 10,60 15,56
ΔH°кип., кДж/моль 6,55 20,42 30,31 41,81
ΔH°гидр. Hal — , кДж/моль -535,9 -405,7 -386,0 -301,7
pKдис. Hal2 2,4 6,8 4,5 2,6
Степень термической диссоциации молекул Hal2 при 1000 °K и при 2000 °K 0,043 и 0,99 0,00035 и 0,37 0,0023 и 0,72 0,28 и 0,89
Удельное электрическое сопротивление (298 °K), мкОм·м 10 14 1,3·10 17 1,3·10 19
Относительная электропроводность (Hg = 1, 298 °K) 9,66·10 -15 7,43·10 -18 7,43·10 -20
Стандартная энтропия S°298, Дж/моль·К 202,85 223,1 151,77 116,81 121,42
Растворимость в воде (25 °C), моль/л Разлагает воду 0,091 0,21 0,0013
Растворимость в воде (25 °C), г/л Разлагает воду 6,5 34,6 0,3
Степень гидролиза в насыщенном растворе, % 33 0,55 0,49

Все галогены образуют двухатомные молекулы, имеющие однотипное электронное строение. Строение молекул различных галогенов отличается в основном количественно. Кратность связи у них равна единице.

Энергетическая диаграмма молекулы галогена:

Прочность молекулы фтора, несмотря на наименьшее межъядерное расстояние относительно других галогенов намного меньше по сравнению с молекулами хлора и брома. Во внешней электронной оболочке атома фтора отсутствует d-подоболочка, которая есть у остальных галогенов. За счет d-подоболочки имеет место дополнительное донорно-акцепторное взаимодействие, упрочняющее связь за счет p-электронов и d атомной орбитали. По величинам энтальпии и константы диссоциации молекула фтора сравнима с молекулой йода. В то же время силовая константа связи в молекуле фтора в 2 с лишним раза превосходит таковую у молекулы хлора. Другими словами, химическая связь в молекуле фтора менее прочная, но более жесткая.

Схема образования химической связи в молекулах фтора и хлора:

При образовании молекулы фтора понижение энергии электронов достигается за счет взаимодействия 2p атомных орбиталей с неспаренными электронами атомов фтора (система 1 + 1). Остальные p-АО неподеленных электронных пар можно считать не учавствующими в образовании химической связи. Химическая связь в молекуле хлора, кроме аналогичного взаимодействия валентных 3p-АО атомов хлора, также образуется за счет взаимодействия 3p-АО неподеленной электронной пары одного атома хлора с вакантной 3d-АО другого (система 2 + 0). В результате порядок связи в молекуле хлора (1,12) больше, чем в молекуле фтора, а химическая связь прочнее.

Сродство к электрону у атома фтора также меньше, чем у хлора. Фтор является менее электрофильным элементом по сравнению с хлором. Это объясняется кайносимметричностью 2p-электронов атома фтора и связанным с ней эффектом обратного экранирования. Дело в том, что 2p-АО в атоме фтора сильнее притянуты к ядру и лежат глубже полностью заполненной электронами некайносимметричной 2s-АО. Последняя, будучи полностью заселенной, отталкивает присоединяемый атомом фтора электрон, уменьшая электронное сродство и повышая ионизационные потенциалы. С повышением в ряду F-At радиуса атомов возрастает и поляризуемость молекул. В результате усиливается межмолекулярное дисперсионное взаимодействие, что обуславливает повышение температур плавления и кипения галогенов.

В ряду Cl2-Br2-I2 прочность связи между атомами в молекуле постепенно снижается, что находит отражение в уменьшении энтальпии диссоциации молекул галогенов на атомы. Причины этого заключаются в следующем. С увеличением размеров внешних электронных облаков взаимодействующих атомов степень их перекрывания понижается, а область перекрывания располагается все дальше от атомных ядер. Поэтому при переходе от хлора к брому и йоду притяжение ядер атомов к области перекрывания электронных облаков уменьшается. Кроме того, в ряду Cl-Br-I возрастает число промежуточных электронных слоев, экранирующих ядро, что также ослабляет взаимодействие атомных ядер с областью перекрывания.

Цвет простых веществ, образуемых галогенами, определяется главным образом поглощением света, связанным с переходом электрона с одной из занятых π * -орбиталей на свободную σ * -орбиталь. У фтора этот переход соответствует границе ультрафиолетовой и фиолетовой областей спектра, из-за чего цвет вещества оказывается бледно-желтым; у хлора – в фиолетовый, что влечет появление желто-зеленой окраски; красно-коричневый цвет брома связан с поглощением в сине-фиолетовой области, а фиолетовый цвет йода, хорошо видимый в парообразном состоянии, вызван дальнейшим смещением поглощения в зеленую область спектра.

Биологическая роль галогенов

Все галогены обладают очень резким запахом. Вдыхание паров фтора, хлора и брома даже в небольших количествах вызывает сильное раздражение дыхательных путей и воспаление слизистых оболочек, а больших – удушение и тяжелое отравление. Жидкий бром, попадая на кожу, вызывает сильные ожоги и долго не заживающие язвы. В то же время, галогены необходимы для жизни.

Читайте также:  Загорелась лампочка подушек безопасности; Клуб любителей Chevrolet LacettiGentraCruze; Русское сообщ

Фтор важен для млекопитающих, в т.ч. и человека. Его соединения содержатся в костях и эмали зубов (0,01%). Колебания в содержании фтора в питьевой воде приводят к различным заболеваниям зубов. В то же время фтор и его соединения сильноядовиты, исключение составляют CF4, SF6 и некоторые другие химически инертные вещества.

Хлор существенно важен для многих форм жизни, включая человека. Ионы хлора в организме активируют некоторые ферменты, служат источником для образования соляной кислоты, создающей благоприятную среду для действия ферментов желудочного сока, влияют на электропроводность клеточных мембран и т.д. Соединения хлора содержатся в плазме крови и желудочном соке.

Необходим для поддержания жизни и хлорид натрия. Солевой обмен связан с водным балансом организма. Повышенное содержание хлорида натрия в организме удерживает воду в тканях.

Йод также важен для многих живых существ, в т.ч. и для человека. Соединения йода необходимы для нормальной работы щитовидной железы. Йод содержится не только в щитовидной железе, но и в надпочечниках. Гормон щитовидной железы тироксин (соединение йода) определяет общий темп процессов жизнедеятельности. Пары йода ядовиты.

Недостаток всех вышеперечисленных элементов приводит к серьезным заболеваниям.

Биологическая роль брома и астата не установлена. В небольших количествах соединения брома оказывают успокаивающее действие на центральную нервную систему. Бром очень токсичен, соединения брома, содержание анионы брома малотоксичны. Астат токсичен в силу своей радиоактивности.

Растворимость галогенов

Молекулы галогенов неполярны и, как обычно для неполярных веществ, умеренно растворимы в воде (за исключением фтора, который энергично взаимодействует с водой), причем растворимость брома максимальна. Один объем воды растворяет при комнатной температуре около 2,5 объемов хлора. Этот раствор называется хлорной водой (для брома и йода – бромная и йодная вода соответственно). При пропускании хлора в охлажденную до 0 °C воду из раствора выделяются зеленовато-желтые кристаллы клатратных соединений Cl2·8H2O и Cl2·6H2O. Это вещество плавится инконгруэнтно при 9,6 °C.

Значительно лучше неполярные галогены растворяются в неполярных органических растворителях (за исключением хлора и фтора, которые интенсивно реагируют практически со всеми органическими растворителями). CS2, C2H5OH, C2H5OC2H5, CHCl3, CCl4, C6H6, бензине – «подобное растворяется в подобном». Для растворения хлора можно использовать CCl4. Йод также хорошо растворим в растворах иодидов металлов за счет образования комплексного иона I 3- . Это свойство позволяет легко экстрагировать галогены из водных растворов. Если, например, взболтать водный раствор йода с небольшим количеством CS2 (не смешивающегося с водой), то почти весь йод перейдет из воды в CS2, окрашивая его в фиолетовый цвет.

Особенностью галогенов является то, что растворение в воде процесс не только физический, но и химический:

H2O + Hal2 ↔ Hhal + HhalO, Hal = Cl, Br

В водном растворе галогены диспропорционируют – подробнее см. химические свойства галогенов.

Галогены

Галоге́ны (от греч. ἁλός — «соль» и γένος — «рождение, происхождение»; иногда употребляется устаревшее название гало́иды) — химические элементы 17-й группы периодической таблицы химических элементов Д. И. Менделеева (по устаревшей классификации — элементы главной подгруппы VII группы) [1] .

Реагируют почти со всеми простыми веществами, кроме некоторых неметаллов. Все галогены — энергичные окислители, поэтому встречаются в природе только в виде соединений. С увеличением порядкового номера химическая активность галогенов уменьшается, химическая активность галогенид-ионов F − , Cl − , Br − , I − , At − уменьшается.

К галогенам относятся фтор F, хлор Cl, бром Br, иод I, астат At, а также (формально) искусственный элемент Теннесин Ts.

Фтор F Хлор Cl Бром Br Иод I

Все галогены — неметаллы, являются сильными окислителями. На внешнем энергетическом уровне 7 электронов. При взаимодействии с металлами возникает ионная связь, и образуются соли. Галогены (кроме фтора) при взаимодействии с более электроотрицательными элементами могут проявлять и восстановительные свойства вплоть до высшей степени окисления +7.

Содержание

  • 1 Этимология
  • 2 Строение атомов и степени окисления
  • 3 Распространённость элементов и получение простых веществ
  • 4 Физические свойства галогенов
  • 5 Химические свойства галогенов
  • 6 Применение галогенов и их соединений
  • 7 Токсичность галогенов
  • 8 Примечания
  • 9 Литература

Этимология

Термин «галогены» в отношении всей группы элементов (на тот момент были известны фтор, хлор, бром и иод) был предложен в 1841 году шведским химиком Й. Берцелиусом. Первоначально слово «галоген» (в буквальном переводе с греческого — «солерод») было предложено в 1811 году немецким учёным И. Швейггером в качестве названия для недавно открытого хлора, однако в химии закрепилось название, которое предложил Г. Дэви [2] .

Строение атомов и степени окисления

Электронная конфигурация внешней электронной оболочки атомов галогенов ns 2 np 5 : фтор — 2s 2 2p 5 , хлор — 3s 2 3p 5 , бром — 4s 2 4p 5 , иод — 5s 2 5p 5 , астат — 6s 2 6p 5 .

Имея на внешней электронной оболочке 7 электронов, атомы всех галогенов легко присоединяют недостающий до завершения оболочки 1 электрон и в своих соединениях проявляют степень окисления −1. Хлор, бром, иод и астат в соединениях с более электроотрицательными элементами проявляют положительные степени окисления: +1, +3, +5, +7. Для фтора характерна постоянная степень окисления −1.

Распространённость элементов и получение простых веществ

Как уже было сказано выше, галогены имеют высокую реакционную способность, поэтому встречаются в природе обычно в виде соединений.

Их распространённость в земной коре уменьшается при увеличении атомного радиуса от фтора к иоду. Количество астата в земной коре измеряется граммами, а теннессин в природе отсутствует. Фтор, хлор, бром и иод производятся в промышленных масштабах, причём объёмы производства хлора значительно выше, чем трёх других стабильных галогенов.

В природе эти элементы встречаются в основном в виде галогенидов (за исключением иода, который также встречается в виде иодата натрия или калия в месторождениях нитратов щелочных металлов). Поскольку многие хлориды, бромиды и иодиды растворимы в воде, то эти анионы присутствуют в океане и природных рассолах. Основным источником фтора является фторид кальция, который очень малорастворим и находится в осадочных породах (как флюорит CaF2).

Основным способом получения простых веществ является окисление галогенидов. Высокие положительные стандартные электродные потенциалы Eo(F2/F − ) = +2,87 В и Eo(Cl2/Cl − ) = +1,36 В показывают, что окислить ионы F − и Cl − можно только сильными окислителями. В промышленности применяется только электролитическое окисление. При получении фтора нельзя использовать водный раствор, поскольку вода окисляется при значительно более низком потенциале (+1,32 В) и образующийся фтор стал бы быстро реагировать с водой. Впервые фтор был получен в 1886 г. французским химиком Анри Муассаном при электролизе раствора гидрофторида калия KHF2 в безводной плавиковой кислоте.

В промышленности хлор в основном получают электролизом водного раствора хлорида натрия в специальных электролизёрах. При этом протекают следующие реакции:

полуреакция на аноде: 2Cl − (aq) → Cl 2 (g) + 2e − ><^<->>>
ightarrow ><_<2>>>+><^<->>>
полуреакция на катоде: H 2 O(l) + 2e − → 2OH − (aq) + H 2 ( g ) ><_<2>>>+><^<->>
ightarrow ><^<->>>+><_<2>(g)>>

Окисление воды на аноде подавляется использованием такого материала электрода, который имеет более высокое перенапряжение по отношению к O2, чем к Cl2 (таким материалом является, в частности, RuO2).

В современных электролизёрах катодное и анодное пространства разделены полимерной ионообменной мембраной. Мембрана позволяет катионам Na + переходить из анодного пространства в катодное. Переход катионов поддерживает электронейтральность в обеих частях электролизёра, так как в течение электролиза отрицательные ионы удаляются от анода (превращение 2Cl − в Cl2) и накапливаются у катода (образование OH − ). Перемещение OH − в противоположную сторону могло бы тоже поддерживать электронейтральность, но ион OH − реагировал бы с Cl2 и сводил на нет весь результат.

Читайте также:  Бензорез по металлу Makita DPC 6431; Электро Бензо Инструмент

Бром получают химическим окислением бромид-иона, находящегося в морской воде. Подобный процесс используется и для получения иода из природных рассолов, богатых I − . В качестве окислителя в обоих случаях используют хлор, обладающий более сильными окислительными свойствами, а образующиеся Br2 и I2 удаляются из раствора потоком воздуха.

Физические свойства галогенов

при обычных условиях

Химические свойства галогенов

Все галогены проявляют высокую окислительную активность, которая уменьшается при переходе от фтора к астату. Фтор — самый активный из галогенов, реагирует со всеми металлами без исключения, многие из них в атмосфере фтора самовоспламеняются, выделяя большое количество теплоты, например:

2 A l + 3 F 2 → 2 A l F 3 + 2989 k J ightarrow 2AlF_<3>+2989kJ>>>

Без нагревания фтор реагирует и со многими неметаллами (H2, S, С, Si, Р); все реакции при этом сильно экзотермические и могут протекать со взрывом, например:

H 2 + F 2 → 2 H F + 547 k J +F_<2>
ightarrow 2HF+547kJ>>>

При нагревании фтор окисляет все другие галогены по схеме

Hal2 + F2 = 2НalF H a l 2 + F 2 → 2 H a l F , H a l = C l , B r , I +F_<2>
ightarrow 2HalF, Hal=Cl, Br, I>>>

причём в соединениях HalF степени окисления хлора, брома, иода и астата равны +1.

Наконец, при облучении фтор реагирует даже с тяжёлыми инертными (благородными) газами:

X e + F 2 → X e F 2 + 152 k J ightarrow XeF_<2>+152kJ>>>

Взаимодействие фтора со сложными веществами также протекает очень энергично. Так, он окисляет воду, при этом реакция носит взрывной характер:

2 F 2 + 2 H 2 O → 4 H F + O 2 +2H_<2>O
ightarrow 4HF+O_<2>>>>

Свободный хлор также очень реакционноспособен, хотя его активность и меньше, чем у фтора. Он непосредственно реагирует со всеми простыми веществами, за исключением кислорода, азота и благородных газов:

S i + 2 C l 2 → S i C l 4 + 662 k J ightarrow SiCl_<4>+662kJ>>> H 2 + C l 2 → 2 H C l + 185 k J +Cl_<2>
ightarrow 2HCl+185kJ>>>

Особый интерес представляет реакция с водородом. Так, при комнатной температуре, без освещения хлор практически не реагирует с водородом, тогда как при нагревании или при освещении (например, на прямом солнечном свету) эта реакция протекает со взрывом по приведенному ниже цепному механизму:

C l 2 → h ν 2 C l ⋅ ]>2Clcdot >>> C l ⋅ + H 2 → H C l + H ⋅ ightarrow HCl+Hcdot >>> H ⋅ + C l 2 → H C l + C l ⋅ ightarrow HCl+Clcdot >>>

Возбуждение этой реакции происходит под действием фотонов h ν >> , которые вызывают диссоциацию молекул Cl2 на атомы — при этом возникает цепь последовательных реакций, в каждой из которых появляется частица, инициирующая начало последующей стадии.

Реакция между Н2 и Cl2 послужила одним из первых объектов исследования цепных фотохимических реакций. Наибольший вклад в развитие представлений о цепных реакциях внёс русский учёный, лауреат Нобелевской премии (1956 год) Н. Н. Семёнов.

Хлор вступает в реакцию со многими сложными веществами, например замещения и присоединения с углеводородами:

C H 4 + C l 2 → C H 3 C l + H C l +Cl_<2>
ightarrow CH_<3>Cl+HCl>>> H 2 C = C H 2 + C l 2 → C H 2 C l — C H 2 C l C< ext<=>>CH_<2>+Cl_<2>
ightarrow CH_<2>Cl< ext<->>CH_<2>Cl>>>

Хлор способен при нагревании вытеснять бром или иод из их соединений с водородом или металлами:

C l 2 + 2 K B r → 2 K C l + B r 2 +2KBr
ightarrow 2KCl+Br_<2>>>>

а также обратимо реагирует с водой, образуя равновесную смесь веществ, называемую хлорной водой:

C l 2 + H 2 O ⇄ H C l + H C l O − 25 k J +H_<2>O
ightleftarrows HCl+HClO-25kJ>>>

Хлор может таким же образом реагировать (диспропорционировать) со щелочами:

  • на холоде

C l 2 + 2 N a O H → N a C l + N a C l O + H 2 O +2NaOH
ightarrow NaCl+NaClO+H_<2>O>>>

  • при нагревании:

3 C l 2 + 6 K O H → 5 K C l + K C l O 3 + 3 H 2 O +6KOH
ightarrow 5KCl+KClO_<3>+3H_<2>O>>>

Химическая активность брома меньше, чем у фтора и хлора, но все же достаточно велика в связи с тем, что бром обычно используют в жидком состоянии, и поэтому его исходные концентрации при прочих равных условиях больше, чем у хлора. Он вступает в те же реакции, что и хлор. Являясь более мягким реагентом, бром находит широкое применение в органической химии. Бром, так же как и хлор растворяется в воде и, частично реагируя с ней, образует так называемую «бромную воду».

Растворимость в воде иода — 0,3395 грамма на литр при 25 градусах Цельсия [4] , это меньше, чем у брома. Водный раствор иода называется «иодной водой» [5] . Иод способен растворяться в растворах иодидов с образованием комплексных анионов:

I 2 + I − → [ I 3 ] − +I^<->
ightarrow [I_<3>]^<->>>>

Образующийся раствор называется раствором Люголя.

Иод существенно отличается по химической активности от остальных галогенов. Он не реагирует с большинством неметаллов, а с металлами медленно реагирует только при нагревании. Взаимодействие же иода с водородом происходит только при сильном нагревании, реакция является эндотермической и обратимой:

H 2 + I 2 ⇄ 2 H I − 53 k J +I_<2>
ightleftarrows 2HI-53kJ>>>

Таким образом, химическая активность галогенов последовательно уменьшается от фтора к астату. Каждый галоген в ряду F — At может вытеснять последующий из его соединений с водородом или металлами, то есть каждый галоген в виде простого вещества способен окислять галогенид-ион любого из последующих галогенов [6] .

Астат ещё менее реакционноспособен, чем иод. Но и он реагирует с металлами (например с литием):

2 L i + A t 2 → 2 L i A t ightarrow 2LiAt>>>

При диссоциации образуются не только анионы, но и катионы At + : HAt диссоциирует на:

H + + A t − ⇄ H A t ⇄ A t + + H − +At^<->
ightleftarrows HAt
ightleftarrows At^<+>+H^<->>>>

Применение галогенов и их соединений

Природное соединение фтора — криолит Na3AlF6 — применяется при получении алюминия. Соединения фтора используются в качестве добавок в зубные пасты для предотвращения заболеваний кариесом.

Хлор широко используется для получения соляной кислоты, в органическом синтезе при производстве пластмасс и синтетических волокон, каучуков, красителей, растворителей и др. Многие хлорсодержащие соединения используют для борьбы с вредителями в сельском хозяйстве. Хлор и его соединения применяются для отбеливания льняных и хлопчатобумажных тканей, бумаги, обеззараживания питьевой воды. Правда, применение хлора для обеззараживания воды далеко не безопасно, для этих целей лучше использовать озон.

Простые вещества и соединения брома и иода используются в фармацевтической и химической промышленности.

Токсичность галогенов

Вследствие высокой реакционной способности (особенно это ярко проявляется у фтора) все галогены являются ядовитыми веществами с сильно выраженным удушающим и поражающим ткани воздействиями.

Большую опасность представляют пары и аэрозоль фтора, так как в отличие от других галогенов имеют довольно слабый запах и ощущаются только в больших концентрациях.

2.3.1. Химические свойства водорода и галогенов.

Химические свойства водорода

Атом водорода имеет электронную формулу внешнего (и единственного) электронного уровня 1s 1 . С одной стороны, по наличию одного электрона на внешнем электронном уровне атом водорода похож на атомы щелочных металлов. Однако, ему, так же как и галогенам не хватает до заполнения внешнего электронного уровня всего одного электрона, поскольку на первом электронном уровне может располагаться не более 2-х электронов. Выходит, что водород можно поместить одновременно как в первую, так и в предпоследнюю (седьмую) группу таблицы Менделеева, что иногда и делается в различных вариантах периодической системы:

С точки зрения свойств водорода как простого вещества, он, все-таки, имеет больше общего с галогенами. Водород, также как и галогены, является неметаллом и образует аналогично им двухатомные молекулы (H2).

В обычных условиях водород представляет собой газообразное, малоактивное вещество. Невысокая активность водорода объясняется высокой прочностью связи между атомами водорода в молекуле, для разрыва которой требуется либо сильное нагревание, либо применение катализаторов, либо и то и другое одновременно.

Читайте также:  Отчего жрет резину с внутренней или внешней стороны на передней оси автомобиля

Взаимодействие водорода с простыми веществами

с металлами

Из металлов водород реагирует только с щелочными и щелочноземельными! К щелочным металлам относятся металлы главной подгруппы I-й группы (Li, Na, K, Rb, Cs, Fr), а к щелочно-земельным — металлы главной подгруппы II-й группы, кроме бериллия и магния (Ca, Sr, Ba, Ra)

При взаимодействии с активными металлами водород проявляет окислительные свойства, т.е. понижает свою степень окисления. При этом образуются гидриды щелочных и щелочноземельных металлов, которые имеют ионное строение. Реакция протекает при нагревании:

Следует отметить, что взаимодействие с активными металлами является единственным случаем, когда молекулярный водород Н2 является окислителем.

с неметаллами

Из неметаллов водород реагирует только c углеродом, азотом, кислородом, серой, селеном и галогенами!

Под углеродом следует понимать графит или аморфный углерод, поскольку алмаз — крайне инертная аллотропная модификация углерода.

При взаимодействии с неметаллами водород может выполнять только функцию восстановителя, то есть только повышать свою степень окисления:

Взаимодействие водорода со сложными веществами

с оксидами металлов

Водород не реагирует с оксидами металлов, находящихся в ряду активности металлов до алюминия (включительно), однако, способен восстанавливать многие оксиды металлов правее алюминия при нагревании:

c оксидами неметаллов

Из оксидов неметаллов водород реагирует при нагревании с оксидами азота, галогенов и углерода. Из всех взаимодействий водорода с оксидами неметаллов особенно следует отметить его реакцию с угарным газом CO.

Смесь CO и H2 даже имеет свое собственное название – «синтез-газ», поскольку из нее в зависимости от условий могут быть получены такие востребованные продукты промышленности как метанол, формальдегид и даже синтетические углеводороды:

c кислотами

С неорганическими кислотами водород не реагирует!

Из органических кислот водород реагирует только с непредельными, а также с кислотами, содержащими функциональные группы способные к восстановлению водородом, в частности альдегидные, кето- или нитрогруппы.

c солями

В случае водных растворов солей их взаимодействие с водородом не протекает. Однако при пропускании водорода над твердыми солями некоторых металлов средней и низкой активности возможно их частичное или полное восстановление, например:

Химические свойства галогенов

Галогенами называют химические элементы VIIA группы (F, Cl, Br, I, At), а также образуемые ими простые вещества. Здесь и далее по тексту, если не сказано иное, под галогенами будут пониматься именно простые вещества.

Все галогены имеют молекулярное строение, что обусловливает низкие температуры плавления и кипения данных веществ. Молекулы галогенов двухатомны, т.е. их формулу можно записать в общем виде как Hal2.

Галоген
Физические свойства

Следует отметить такое специфическое физическое свойство йода, как его способность к сублимации или, иначе говоря, возгонке. Возгонкой, называют явление, при котором вещество, находящееся в твердом состоянии, при нагревании не плавится, а, минуя жидкую фазу, сразу же переходит в газообразное состояние.

Электронное строение внешнего энергетического уровня атома любого галогена имеет вид ns 2 np 5 , где n – номер периода таблицы Менделеева, в котором расположен галоген. Как можно заметить, до восьмиэлектронной внешней оболочки атомам галогенов не хватает всего одного электрона. Из этого логично предположить преимущественно окисляющие свойства свободных галогенов, что подтверждается и на практике. Как известно, электроотрицательность неметаллов при движении вниз по подгруппе снижается, в связи с чем активность галогенов уменьшается в ряду:

Взаимодействие галогенов с простыми веществами

Все галогены являются высокоактивными веществами и реагируют с большинством простых веществ. Однако, следует отметить, что фтор из-за своей чрезвычайно высокой реакционной способности может реагировать даже с теми простыми веществами, с которыми не могут реагировать остальные галогены. К таким простым веществам относятся кислород, углерод (алмаз), азот, платина, золото и некоторые благородные газы (ксенон и криптон). Т.е. фактически, фтор не реагирует лишь с некоторыми благородными газами.

Остальные галогены, т.е. хлор, бром и йод, также являются активными веществами, однако менее активными, чем фтор. Они реагируют практически со всеми простыми веществами, кроме кислорода, азота, углерода в виде алмаза, платины, золота и благородных газов.

Взаимодействие галогенов с неметаллами

водородом

При взаимодействии всех галогенов с водородом образуются галогеноводороды с общей формулой HHal. При этом, реакция фтора с водородом начинается самопроизвольно даже в темноте и протекает со взрывом в соответствии с уравнением:

Реакция хлора с водородом может быть инициирована интенсивным ультрафиолетовым облучением или нагреванием. Также протекает со взрывом:

Бром и йод реагируют с водородом только при нагревании и при этом, реакция с йодом является обратимой:

фосфором

Взаимодействие фтора с фосфором приводит к окислению фосфора до высшей степени окисления (+5). При этом происходит образование пентафторида фосфора:

При взаимодействии хлора и брома с фосфором возможно получение галогенидов фосфора как в степени окисления + 3, так и в степени окисления +5, что зависит от пропорций реагирующих веществ:

При этом в случае белого фосфора в атмосфере фтора, хлора или жидком броме реакция начинается самопроизвольно.

Взаимодействие же фосфора с йодом может привести к образованию только триодида фосфора из-за существенно меньшей, чем у остальных галогенов окисляющей способности:

серой

Фтор окисляет серу до высшей степени окисления +6, образуя гексафторид серы:

Хлор и бром реагируют с серой, образуя соединения, содержащие серу в крайне не свойственных ей степенях окисления +1 и +2. Данные взаимодействия являются весьма специфичными, и для сдачи ЕГЭ по химии умение записывать уравнения этих взаимодействий не обязательно. Поэтому три нижеследующих уравнения даны скорее для ознакомления:

Взаимодействие галогенов с металлами

Как уже было сказано выше, фтор способен реагировать со всеми металлами, даже такими малоактивными как платина и золото:

Остальные галогены реагируют со всеми металлами кроме платины и золота:

Реакции галогенов со сложными веществами

Реакции замещения с галогенами

Более активные галогены, т.е. химические элементы которых расположены выше в таблице Менделеева, способны вытеснять менее активные галогены из образуемых ими галогеноводородных кислот и галогенидов металлов:

Аналогичным образом, бром вытесняет серу из растворов сульфидов и сероводорода:

Хлор является более сильным окислителем и окисляет сероводород в его водном растворе не до серы, а до серной кислоты:

Взаимодействие галогенов с водой

Вода горит во фторе синим пламенем в соответствии с уравнением реакции:

Бром и хлор реагируют с водой иначе, чем фтор. Если фтор выступал в роли окислителя, то хлор и бром диспропорционируют в воде, образуя смесь кислот. При этом реакции обратимы:

HCl + HClO» width=»225″ height=»28″/>

HBr + HBrO» width=»225″ height=»28″/>

Взаимодействие йода с водой протекает в настолько ничтожно малой степени, что им можно пренебречь и считать, что реакция не протекает вовсе.

Взаимодействие галогенов с растворами щелочей

Фтор при взаимодействии с водным раствором щелочи опять же выступает в роли окислителя:

Умение записывать данное уравнение не требуется для сдачи ЕГЭ. Достаточно знать факт о возможности такого взаимодействия и окислительной роли фтора в этой реакции.

В отличие от фтора, остальные галогены в растворах щелочей диспропорционируют, то есть одновременно и повышают и понижают свою степень окисления. При этом, в случае хлора и брома в зависимости от температуры возможно протекание по двум разным направлениям. В частности, на холоду реакции протекают следующим образом:

а при нагревании:

Йод реагирует с щелочами исключительно по второму варианту, т.е. с образованием йодата, т.к. гипоиодит не устойчив не только при нагревании, но также при обычной температуре и даже на холоду:

5NaI + NaIO3 + 3H2O» width=»341″ height=»62″/>

Ссылка на основную публикацию
Фиат Панда 2017-2018 (4х4) фото, технические характеристики, отзывы, цена нового кроссовера Fiat Pan
Фиат Панда Кросс - характеристики, фото и видео Этот автомобиль, впервые показанный публике в рамках Женевского автосалона 2014 в марте,...
Утилита mysqldump и шпаргалка по параметрам Мастерская интернет-разработчика
Дамп MySQL базы данных; Сам себе администратор Несколько полезных приемов, которые позволят вам значительно ускорить работу с резервным копированием и...
УФАС оштрафует АЗС Shell за несдержанное обещание
Рубрика Шелл Самые обсуждаемые Новинки Топливные карты Роснефть: РН-карт, Семейная команда. Особенности оформления, управления, контроля, бонусных программ и других функций...
Фиат Фулбек 2019 — фото, все минусы (отзывы владельцев), цены и комплектации, видео тест-драйв, хара
Фиат Фулбек 2020 цены, комплектации новинки, фото, видео тест-драйв Если Toyota Hilux и Volkswagen Amarok считаются достаточно популярными пикапами в...
Adblock detector